Deriving the Gaussian Quadrature

- We are interested in deriving quadratures with higher degrees of precision. Toward this end, observe the following three facts:
	- \Diamond If A quadrature formula using n distinct abscissas degree of precision $\geq n-1$, then it must result from the integration of an interpolation polynomial.
		- \triangleright Suppose the quadrature rule is $Q_n(f) = \sum_{n=1}^n$ $\frac{i=1}{i}$ $\alpha_i f(x_i)$.

$$
\triangleright \text{ Then } \sum_{i=1}^{n} \alpha_i x_i^k = \frac{b^{k+1} - a^{k+1}}{k+1} \text{ for } k = 0, \dots, n-1.
$$

 \triangleright We may rewrite this system of equations as

$$
\begin{bmatrix} 1 & \cdots & 1 \\ x_1 & \cdots & x_n \\ \vdots & \vdots & \vdots \\ x_1^{n-1} & \cdots & x_n^{n-1} \end{bmatrix} \begin{bmatrix} \alpha_1 \\ \alpha_2 \\ \vdots \\ \alpha_n \end{bmatrix} = \begin{bmatrix} b-a \\ \frac{b^2-a^2}{2} \\ \vdots \\ \frac{b^n-a^n}{n} \end{bmatrix} . \tag{1}
$$

The coefficient matrix is the Vandermonde matrix. Thus THE system (??) has a unique solution for α_i), $i = 1, \ldots, n$.

- \triangleright On the other hand, we can construct an interpolating polynomial of degree $n-1$ using the same nodes $\{x_i\}_{i=1}^n$.
- \triangleright This polynomial results in a quadrature formula $\sum_{n=1}^n$ $i=1$ $\beta_i f(x_i)$ which has degree of precision at least $n - 1$.
- \triangleright By setting $E_n(x^k) = 0$ for $k = 0, \ldots, n-1$ in the new quadrature, we end up with the same linear system $(??)$.
- \triangleright By uniqueness, it must be that $\alpha_i = \beta_i$.
- \Diamond Since the Gaussian quadrature is expected to have degree of precision higher than n , we conclude that
	- \triangleright It may be thought of as the integration of a certain polynomial that interpolates $f(x)$ at a certain set of nodes x_1, \ldots, x_n .
	- \triangleright It must remain true that

$$
E_n(f) = \int_a^b f[x_1, \dots, x_n, t] \prod_{i=1}^n (t - x_i) dt.
$$
 (2)

- \rhd Not only $E_n(x^k) = 0$ for $k = 0, \ldots, n-1$, but we further would like to require $E_n(x^k) = 0$ for $k = n, \ldots, n + \nu$, and for ν as large as possible.
- $\Diamond \text{ If } f(t) = t^{n+\nu}, \nu \geq 0, \text{ then the } n \text{-th divided difference } f[x_1, \ldots, x_n, t]$ is a polynomial of degree at most ν .
	- > When $n = 1$, we find $f[x_1, t] = \frac{f(x_1) f(t)}{x_1 t} = \frac{x_1^{1+\nu} t^{1+\nu}}{x_1 t}$ $\frac{-t^{-1}}{x_1-t}$ is obviously a polynomial of degree ν .
	- \triangleright Suppose the assertion is true for $n = k$. Consider $f(t) =$ $t^{k+1+\nu}$. (We are preparing to use the Induction Principle on n.)
	- \triangleright Regard $f(t) = t^{k+(1+\nu)}$. Then, by induction hypothesis, the difference quotient $f[x_2, \ldots, x_{k+1}, t]$ is a polynomial of degree at most $\nu + 1$.
	- \triangleright Observe that

$$
f[x_1,\ldots,x_{k+1},t] = \frac{f[x_1,\ldots,x_{k+1}]-f[x_2,\ldots,x_{k+1},t]}{x_1-t}.
$$

Note that the numerator has a zero at $t = x_1$. After cancelation, $f[x_1, \ldots, x_{k+1}, t]$ is a polynomial of degree of most ν .

- \triangleright The assertion now follows from the induction.
- With all said, if we choose the nodes x_i so that $\omega(t) = \prod_{i=1}^{n}$ $i+1$ $(t - x_i)$ is perpendicular to all lower degree polynomials, then the error $E(x^{n+\nu})$ would be zero for $\nu = 0, 1, \ldots n-1$. The theory of orthogonal polynomials now kicks in.