Finally, The Gaussian Quadrature!

- Recall that
 - ♦ The Gaussian quadrature is a special type of Newton-Cotes quadrature.
 - ♦ The error in the quadrature is given by

$$E_n(f) = \int_a^b f[x_1, \dots, x_n, t] \prod_{i=1}^n (t - x_i) dt.$$

♦ The divided difference $f[x_1, ..., x_n, t]$ is a polynomial of degree ν is $f(t) = t^{n+\nu}$.

♦ If we can choose the nodes x_i so that $\omega(t) = \prod_{i+1}^n (t - x_i)$ is the *n*-th orthogonal polynomials, then the error $E(t^{n+\nu} = 0$ for all $\nu = 0, 1, ..., n - 1$;

- Need to make sure all roots of the *n*-th orthogonal polynomial are real-valued, distinct, and contained in (a, b).
 - ♦ Let $x_1, \ldots, x_m \in (a, b)$ denote all the distinct, real zeros of $\phi_n(x)$ with odd multiplicity.
 - \diamond Assume m < n. We want to prove by contradiction.
 - ♦ Consider the integral $\int_a^b (x x_1) \dots (x x_m) \phi_n(x) dx$. Note that the integrand does not change sign over [a, b] and is not identically zero. Thus the integral is positive.
 - ♦ But $(x x_1) \dots (x x_m)$ is a polynomial of degree m < n.
 - ♦ By orthogonality of $\omega_n(x)$, the integral should be zero. This is a contradiction.
 - \diamond It must be that m = n, and the multiplicity is 1.

• Gaussian abscissas and weights over the interval [-1, 1].

n	Abscissas x_j	Weights α_j
2	$\pm 1/\sqrt{3}$	1
3	$\pm\sqrt{0.6}$	5/9
	0	8/9
4	± 0.8611363116	0.3478548451
	± 0.3399810436	0.6521451549
5	± 0.9061798459	0.2369268850
	± 0.5384693101	0.4786286705
	0	0.5688888889
6	± 0.9324695142	0.1713244924
	± 0.6612093865	0.3607615730
	± 0.2386191861	0.4679139346

- To integrate f(x) over an arbitrary interval [a, b],
 - \diamond Change of variables:

$$x = a + \frac{b-a}{2}(\xi+1), \ dx = \frac{b-a}{2}d\xi.$$

 $\diamond\,$ Substitution:

$$\int_{a}^{b} f(x)dx = \int_{-1}^{1} f(a + \frac{b-a}{2}(\xi+1))\frac{b-a}{2}d\xi$$
$$= \frac{b-a}{2}\int_{-1}^{1} f(a + \frac{b-a}{2}(\xi+1))d\xi$$
$$\approx \frac{b-a}{2}\sum_{i=1}^{n} \alpha_{i}f(x_{i})$$

- $\triangleright \alpha_j$ are the tabulated Gaussian weights associated with the tabulated Gaussian abscissa a_j in [-1, 1].
- $\triangleright x_j$ is obtained from a_j through $x_j = a + \frac{b-a}{2}(a_j + 1), j = 1, \dots, n.$