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Euler’s Method

• We are interested in knowing not just the qualitative behavior of the
solution, but also solving the differential equation quantitatively. Nu-
merical methods are the necessary tools.

• The simplest numerical method,

� If y(x) is a solution, then

y(xn + h) = y(xn) + hy
′
(xn) + O(h2)

is the Taylor series expansion of y(xn + h) near xn.

� Suppose the accepted solution at xn is given y(xn) ≈ yn, then the
truncated Taylor series suggests that

y(xn + h) ≈ yn+1 = yn + hf(xn, yn) (1)

should be a reasonable approximation.

• Questions always asked in numerical ODE:

� What is the magnitude of the global error

en := yn − y(xn) (2)

at the n-th step? How does the error propagate?

� How does the step size h affect the accuracy?

� What kinds of errors are involved in the calculation? How do they
affect the overall accuracy? How to control the error to get the
best possible accuracy?
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Error Analysis

• The local truncation error is defined to be the difference between the
exact solution y(xn+1) and the approximate solution yn+1, provided no
previous errors have been introduced into the numerical scheme.

� For Euler’s method, the LTE is

Tn+1 := y(xn+1)− y(xn)− hf(xn, y(xn)). (3)

� Suppose y
′′
(x) is continuous and is bounded by C Then

Tn+1 =
h2

2
|y′′

(ξ)| ≤ C

2
h2.

• The (global) errors produced at the previous step will be passed on
to the next step. To see how the errors are propagated, subtract (??)
from (??). The global error at the next step is given by

en+1 = en + h[f(xn, yn)− f(xn, y(xn))]− Tn+1 (4)

where we have assumed that f satisfies the Lipschitz condition in y
with constant L.

� It follows that
|en+1| ≤ (1 + hL)|en|+ T (5)

where T = max |Tn| = O(h2).

� Note that the growth factor 1 + hL determines how en gets prop-
agated.

� The formula can be applied repeatedly to give

|en| ≤ T
(1 + hL)n − 1

hL
+ (1 + hL)n|e0| (6)

• Look at the example y′ = λy.

en+1 = (1 + λh)en + [−y(xn+1) + (1 + λh)y(xn) (7)

= Propagated Error + Local Truncation Error.


