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RKF45 Method

• The famous Runge-Kutta-Fehlberg scheme assumes the following val-
ues:
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� RKF45 is indeed made of two Runge-Kutta methods.

. The first one is a 5-stage method that computes
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. The second one is a 6-stage method that computes
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� Note that the same k values are used for both methods.
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Error Estimator

• The reason we want to do two methods together is because they provide
us an almost free error estimator:
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• Don’t panic if you know where this error estimator comes from. It is
the result of lots of research.

• The idea of using the error estimator goes as follows:

� It predicts what error at the current step is being made.

� If the error is too big, then give up the current value of yn+1.
Cut the step size, go back to the previously accepted yn, and re-
compute a new yn+1 (at a different xn+1 because step size has been
changed.)

� If the error is acceptable, then use the estimator to make a conser-
vative estimatation of the next step size. For example, we can con-
sider the possibility of enlarging the step size so that the marching
can be faster, or we can foresee the coming of a difficult region
and, hence, using smaller step size.

• The actual implementation of a variable step method is quite compli-
cated. The MATLAB codes are variable step methods.


