RKF45 Method

• The famous Runge-Kutta-Fehlberg scheme assumes the following values:

0	0					
$\frac{1}{4}$	$\frac{1}{4}$					
$\frac{3}{8}$	$\frac{3}{32}$	$\frac{9}{32}$				
$\frac{12}{13}$	$\frac{1932}{2197}$	$-rac{7200}{2197}$	$\frac{7296}{2197}$			
1	$\frac{439}{216}$	-8	$\frac{3680}{513}$	$-\frac{845}{4104}$		
$\frac{1}{2}$	$-\frac{8}{27}$	2	$-\frac{3544}{4104}$	$\frac{1859}{4104}$	$-\frac{11}{40}$	
	$\frac{25}{216}$	0	$\frac{1408}{2565}$	$\frac{2197}{4104}$	$-\frac{1}{5}$	
	$\frac{16}{135}$	0	$\frac{6656}{12825}$	$\frac{28561}{56430}$	$-\frac{9}{5}$	$\frac{2}{55}$

 $\diamond\,$ RKF45 is indeed made of two Runge-Kutta methods.

 $\triangleright\,$ The first one is a 5-stage method that computes

$$\hat{y}_{n+1} = y_n + \frac{25}{216}k_1 + \frac{1408}{2565}k_3 + \frac{2197}{4104}k_4 - \frac{1}{5}k_5.$$

 $\triangleright\,$ The second one is a 6-stage method that computes

$$y_{n+1} = y_n + \frac{16}{135}k_1 + \frac{6656}{12825}k_3 + \frac{28561}{56430}k_4 - \frac{9}{5}k_5 + \frac{2}{55}k_6.$$

 \diamond Note that the same k values are used for both methods.

• The reason we want to do *two* methods together is because they provide us an *almost free* error estimator:

$$E = \frac{1}{36}k_1 - \frac{128}{4275}k_3 - \frac{2197}{75240}k_4 + \frac{1}{50}k_5 + \frac{2}{55}k_6$$

- Don't panic if you know where this error estimator comes from. It is the result of lots of research.
- The idea of using the error estimator goes as follows:
 - \diamond It *predicts* what error at the current step is being made.
 - ♦ If the error is too *big*, then give up the current value of y_{n+1} . Cut the step size, go back to the previously accepted y_n , and recompute a new y_{n+1} (at a different x_{n+1} because step size has been changed.)
 - ◇ If the error is acceptable, then use the estimator to make a *conservative* estimatation of the next step size. For example, we can consider the possibility of enlarging the step size so that the *marching* can be faster, or we can foresee the coming of a difficult region and, hence, using smaller step size.
- The actual implementation of a variable step method is quite complicated. The MATLAB codes are variable step methods.