More about the RK Methods

- A *R*-stage RK method involves *R* function evaluations per step.
 - \diamond Each of the functions k_r , $r = 1, \ldots, R$, may be interpreted as approximation to the derivative y'(x).
 - \diamond The function ϕ is a weighted mean of these approximations.
- If the *B* matrix in the Butcher array is *strictly lower triangular*, the resulting method is said to be *explicit*. In this case, the Runge-Kutta method is self-sufficient.
 - ◊ If an error estimator is available, then a variable-step Runge-Kutta method can easily be programmed becaused it is a one-step method.
 - \diamond RKF45 is a suggested method is many available ODE packages.
- Recall the Taylor series

$$y(x_{n+1}) = y(x_n) + hy^{(1)}(x_n) + \frac{h^2}{2!}y^{(2)}(x_n) + \dots$$

 \diamond By defining

$$\phi_T(x,y,h) := f(x,y) + \frac{h}{2!} \frac{df}{dx}(x,y) + \dots,$$

the Taylor series can be thought of as a one-step method.

- ♦ One of the main task in developing a Runge-Kutta method is to choose values for the constants c_r, a_r, b_{rs} so that the expansion of the function ϕ defined earlier in the Runge-Kutta method agrees with the expansion for $\phi_T(x, y)$ in as many terms as possible.
- \diamond If the highest term matched has p in the power of h, we say the Runge-Kutta method is of order p. That is, a Runge-Kutta method is a *smart* way of implementing the Taylor series expansion.

- ◇ It is quite often the case that given a specific order, there are a 2-parameter family of Runge-Kutta methods all of which have the same order of accuracy.
- More Examples
 - $\diamond\,$ Two fourth-order 4-stage explicit Runge-Kutta methods

0	0			
1/2	1/2	0		
1/2	0	1/2	0	
1	0	0	1	0
	1/6	2/6	2/6	1/6

0	0			
1/3	1/3	0		
2/3	-1/3	1	0	
1	1	-1	1	0
	1/8	3/8	3/8	1/8

♦ The unique 2-stage implicit Runge-Kutta method of order 4:

$$\begin{array}{c|c|c} 1/2 + \sqrt{3}/6 & 1/4 & 1/4 + \sqrt{3}/6 \\ \hline 1/2 - \sqrt{3}/6 & 1/4 - \sqrt{3}/6 & 1/4 \\ \hline 1/2 & 1/2 \end{array}$$

♦ A 3-stage semi-explicit Runge-kutta method or order 4:

0	0	0	0
1/2	1/4	1/4	0
1	0	1	0
	1/6	4/6	1/6