- Apply a Runge-Kutta method to the test problem $y' = \lambda y$.
 - \diamond Define the global error $\tilde{e}_n := y(x_n) y_n$.
 - \diamond Denote $\overline{h} := \lambda h, k = [k_1, \dots, k_R]^T$ and $E := [1, \dots, 1]^T$.
 - $\diamond\,$ Observe that

$$k = \lambda E y_n + \overline{h} B k,$$

or equivalently,

$$k = \lambda (I - \overline{h}B)^{-1}Ey_n.$$

 $\diamond\,$ It follows that

 $e_{n+1} = e_n + \overline{h}c^T (I - \overline{h}B)^{-1} E e_n$ + (local error due to truncation and round-off).

 \diamond The growth factor is

$$r := 1 + \overline{h}c^T (I - \overline{h}B)^{-1}E.$$

- ♦ The Runge-Kutta method is said to be *absolutely stable* on the interval (α, β) if |r| < 1 whenever $\overline{h} \in (\alpha, \beta)$.
- \diamond For R = 1, 2, 3, 4, all *R*-stage explicit Runge-Kutta methods of order *R* have the same interval of absolute stability. In each of these cases,

$$r = 1 + \overline{h} + \frac{1}{2}\overline{h}^2 + \ldots + \frac{1}{R!}\overline{h}^R.$$
 (1)

Examples on the Stability of RK Methods

• The explicit Euler method is a RK method with the Butcher array $\begin{array}{c|c} 0 & 0 \\ \hline & 1 \end{array}$. The growth factor is given by

$$\rho = 1 + \overline{h}.$$

- \diamond If $\lambda > 0$, then $\rho > 0$ whenever h > 0. That is, for exponentially growing solution, the explicit Euler method can *never* be stable in forward time.
- ♦ If $\lambda < 0$, then the method is stable only if $0 < h < \frac{2}{|\lambda|}$. If $|\lambda|$ is very large, i.e., if the solution decays very rapidly, the step size h has to be small enough to guarantee the stability. This is the so called *still* problem.
- The implicit Euler method is a RK method with the Butcher array $\frac{1 \mid 1}{\mid 1}$. The growth factor is given by

$$\rho = 1 + \overline{h}(1 - \overline{h})^{-1} = \frac{1}{1 - \lambda h}.$$

- \diamond Again, the method cannot be stable in forward time when $\lambda > 0$.
- \diamond It is important to note that when $\lambda < 0$, any positive step size h will make $\rho < 1$. This is a very welcomed feature called *A-stable*. The implicit Euler method is an A-stable method. An A-stable method is an ideal method for solving stiff ordinary differential equations.
- Any 2-stage explicit RK method will have the Butcher array $\begin{array}{c|c} 0 & 0 & 0 \\ a_1 & a_2 & 0 \end{array}$

where $c_1 + c_2 = 1$ and $c_2 a_2 = \frac{1}{2}$. The growth factor is given by

$$\rho = 1 + \overline{h}[c_1, c_2] \begin{bmatrix} 1 & 0 \\ -\overline{h}a_2 & 1 \end{bmatrix}^{-1} \begin{bmatrix} 1 \\ 1 \end{bmatrix} = 1 + \overline{h} + \frac{\overline{h}^2}{2}.$$