Multi-step Methods

- Let $x_0 < x_1...$ be a sequence of points at which the solution $y(x)$ to a differential equation $y' = f(x, y)$ is approximated by the values y_1, y_1, \ldots
	- \Diamond Any numerical method that computes y_{i+1} at x_{i+1} by using *infor*mation at $x_i, x_{i-1}, \ldots, x_{i-k+1}$ is called a k-step method.
	- \Diamond By a linear $(p+1)$ -step method of step size h, we mean a numerical scheme of the form

$$
y_{n+1} = \sum_{i=0}^{p} a_i y_{n-i} + h \sum_{i=-1}^{p} b_i f_{n-i}
$$
 (1)

where $x_k = x_0 + kh$, $f_{n-i} := f(x_{n-i}, y_{n-i})$, and $a_p^2 + b_p^2 \neq 0$.

- \triangleright Note that the information used involves the approximate solution y_i and its first order derivative f_i .
- \triangleright If $b_{-1} = 0$, then the method is said to be explicit; otherwise, it is implicit.
- \triangleright In order to obtain y_{n+1} from an implicit method, usually it is necessary to solve a nonlinear equation. Such a difficulty quite often is compensated by other more desirable properties which are missing from explicit methods. One such a desirable property is the stability.
- The local truncation error of the linear multi-step method at x_{n+1} is defined to be $L[y_{n-p}, h]$ where, with $a_{-1} = -1$,

$$
L[y(x), h] := \sum_{i=-1}^{p} a_i y(x + (p-i)h) + h \sum_{i=-1}^{p} b_i y'(x + (p-i)h).
$$
 (2)

• To derive meaningful multi-step methods, one way is to expand the right hand side of $(??)$ about x by the Taylor series and collect the like powers of h.

We should have

$$
L[y(x), h] = c_0 y(x) + c_1 h y^{(1)}(x) + \ldots + c_q h^q y^{(q)}(x) + \ldots
$$
 (3)

where

$$
c_0 = \sum_{i=-1}^p a_i,
$$

\n
$$
c_1 = \sum_{i=-1}^{p-1} (p-i)a_i + \sum_{i=-1}^p b_i,
$$

\n
$$
c_q = \frac{1}{q!} \sum_{i=-1}^{p-1} (p-i)^q a_i + \frac{1}{(q-1)!} \sum_{i=-1}^{p-1} (p-i)^{q-1} b_i, q \ge 2.
$$

- \Diamond A linear multi-step method is said to be of order r if $c_0 = c_1$... = $c_r = 0$, but $c_{r+1} \neq 0$, i.e., if $L[y(x), h] = c_{r+1}y^{(r+1)}(\eta)h^{r+1}$.
- Another way to derive meaningful multi-step method is to integrate both sides of the differential equation. Suppose we integrate from x_n to x_{n+1} , we obtain

$$
y(x_{n+1}) - y(x_n) = \int_{x_n}^{x_{n+1}} f(x, y(x)) dx.
$$
 (4)

 \Diamond Suppose $(x_n, y_n), (x_{n-1}, y_{n-1}), \ldots, (x_{n-p}, y_{n-p})$ are already known. We may approximate $f(x, y(x))$ by a p-th degree interpolation polynomial $p_p(x)$. In this way, we obtain an explicit scheme

$$
y_{n+1} = y_n + \int_{x_n}^{x_{n+1}} p_p(x) dx = y_n + \sum_{i=0}^p \beta_{pi} f_{n-i}
$$
 (5)

where b_i are the quadrature coefficients. Such a method is called an Adams-Bashforth method.

 \Diamond Similarly, if we also include (x_{n+1}, y_{n+1}) in the data of interpolation, then we end up with an implicit scheme

$$
y_{n+1} = y_n + \sum_{i=-1}^p \beta_{pi} f_{n-i}
$$
 (6)

which is called an Adams-Moulton method.

 $\bullet\,$ Some Adams-Bashforth methods:

 $\bullet\,$ Some Adams-Moulton methods:

