Multi-step Methods

- Let $x_0 < x_1...$ be a sequence of points at which the solution y(x) to a differential equation y' = f(x, y) is approximated by the values $y_1, y_1, ...$
 - ♦ Any numerical method that computes y_{i+1} at x_{i+1} by using *information* at $x_i, x_{i-1}, \ldots, x_{i-k+1}$ is called a *k-step method*.
 - ♦ By a *linear* (p+1)-step method of step size h, we mean a numerical scheme of the form

$$y_{n+1} = \sum_{i=0}^{p} a_i y_{n-i} + h \sum_{i=-1}^{p} b_i f_{n-i}$$
(1)

where $x_k = x_0 + kh$, $f_{n-i} := f(x_{n-i}, y_{n-i})$, and $a_p^2 + b_p^2 \neq 0$.

- \triangleright Note that the information used involves the approximate solution y_i and its first order derivative f_i .
- ▷ If $b_{-1} = 0$, then the method is said to be explicit; otherwise, it is implicit.
- ▷ In order to obtain y_{n+1} from an implicit method, usually it is necessary to solve a nonlinear equation. Such a difficulty quite often is compensated by other more desirable properties which are missing from explicit methods. One such a desirable property is the stability.
- The local truncation error of the linear multi-step method at x_{n+1} is defined to be $L[y_{n-p}, h]$ where, with $a_{-1} = -1$,

$$L[y(x),h] := \sum_{i=-1}^{p} a_i y(x+(p-i)h) + h \sum_{i=-1}^{p} b_i y'(x+(p-i)h).$$
(2)

• To derive meaningful multi-step methods, one way is to expand the right hand side of (??) about x by the Taylor series and collect the like powers of h.

 \diamond We should have

$$L[y(x),h] = c_0 y(x) + c_1 h y^{(1)}(x) + \ldots + c_q h^q y^{(q)}(x) + \ldots$$
(3)

where

$$c_{0} = \sum_{i=-1}^{p} a_{i},$$

$$c_{1} = \sum_{i=-1}^{p-1} (p-i)a_{i} + \sum_{i=-1}^{p} b_{i},$$

$$c_{q} = \frac{1}{q!} \sum_{i=-1}^{p-1} (p-i)^{q}a_{i} + \frac{1}{(q-1)!} \sum_{i=-1}^{p-1} (p-i)^{q-1}b_{i}, q \ge 2.$$

- ♦ A linear multi-step method is said to be of order r if $c_0 = c_1 = \dots = c_r = 0$, but $c_{r+1} \neq 0$, i.e., if $L[y(x), h] = c_{r+1}y^{(r+1)}(\eta)h^{r+1}$.
- Another way to derive meaningful multi-step method is to integrate both sides of the differential equation. Suppose we integrate from x_n to x_{n+1} , we obtain

$$y(x_{n+1}) - y(x_n) = \int_{x_n}^{x_{n+1}} f(x, y(x)) dx.$$
 (4)

♦ Suppose $(x_n, y_n), (x_{n-1}, y_{n-1}), \dots, (x_{n-p}, y_{n-p})$ are already known. We may approximate f(x, y(x)) by a *p*-th degree interpolation polynomial $p_p(x)$. In this way, we obtain an explicit scheme

$$y_{n+1} = y_n + \int_{x_n}^{x_{n+1}} p_p(x) dx = y_n + \sum_{i=0}^p \beta_{pi} f_{n-i}$$
(5)

where b_i are the quadrature coefficients. Such a method is called an *Adams-Bashforth method*.

 \diamond Similarly, if we also include (x_{n+1}, y_{n+1}) in the data of interpolation, then we end up with an implicit scheme

$$y_{n+1} = y_n + \sum_{i=-1}^{p} \beta_{pi} f_{n-i}$$
 (6)

which is called an Adams-Moulton method.

• Some Adams-Bashforth methods:

	0	1	2	3	4
β_{0i}	1				
$2\beta_{1i}$	3	-1			
$12\beta_{2i}$	23	-16	5		
$24\beta_{3i}$	55	-59	37	-9	
$720\beta_{4i}$	1901	-2774	2616	-1274	251

• Some Adams-Moulton methods:

	-1	0	1	2	3	
β_{0i}	1					
$2\beta_{1i}$	1	1				
$12\beta_{2i}$	5	8	-1			
$24\beta_{3i}$	9	19	-5	1		
$720\beta_{4i}$	251	646	-264	106	-19	