Example of Stability Issues in MS methods

• Consider the midpoint rule

$$y_{n+1} = y_{n-1} + 2hf_n$$

applied to the initial value problem

$$y' = -y, y(0) = 1.$$

- ♦ The exact solution is $y(x) = e^{-x}$.
- ♦ The numerical scheme produces a finite difference equation

$$y_{n+1} = y_{n-1} - 2hy_n.$$

1

 $\triangleright\,$ Try a solution of the form

$$y_n = r^n$$
.

- \triangleright The value of r must be zeros of the polynomial $r^2 + 2hr 1 = 0$.
- \triangleright The general solution is given by

$$y_n = \alpha_1 r_1^n + \alpha_2 r_2^n$$

with $r_i = -h \pm \sqrt{h^2 + 1}$.

- Initial condition implies $\alpha_1 + \alpha_2 = 1$. We need one more value y_1 to
- Expressing α_1 and α_2 in terms of y_1 , we have

start the midpoint rule.

$$\alpha_1 = \frac{r_2 - y_1}{r_2 - r_1} = \frac{\sqrt{h^2 + 1} + h + y_1}{\sqrt[2]{h^2 + 1}} \tag{1}$$

$$\alpha_2 = \frac{r_1 - y_1}{r_1 - r_2} = \frac{-h + \sqrt{h^2 + 1} - y_1}{\sqrt[2]{h^2 + 1}}.$$
(2)

- ♦ Note that $|r_1| < 1$ and $|r_2| > 1$.
- ♦ Unless y_1 is such that $\alpha_2 = 0$, y_n grows unboundedly and, hence, deviated from the exact solution regardless of the step size.
- Such a phenomenon is called *numerical instability*.