Convergence Analysis

- Assume x_0 is near enough to a zero x_* of the function f(x) and $f'(x^*) \neq 0$.
- Define $e_k = x_k x^*$. The convergence analysis involves three steps:
 - \diamond Obtain an expression for e_{k+1} in terms of e_k .
 - \diamond Use the expression to show that $e_k \longrightarrow 0$.
 - \diamond Assess how fast e_k converges to zero.
- Define the iteration function $\phi(x)$ for Newton's method by

$$\phi(x) := x - \frac{f(x)}{f'(x)}.$$

Observe the following two iterations.

- \diamond A Newton step is equivalent to $x_{k+1} = \phi(x_k)$.
- \diamond At the zero of $f, x^* = \phi(x^*)$.
- Error Formula:
 - $\circ e_{k+1} = \phi(x_k) \phi(x^*).$ $\circ e_{k+1} = \phi'(\xi_k)e_k \text{ for some } \xi_k \text{ between } x_k \text{ and } x^*.$ $\circ \phi'(x) = \frac{f(x)f''(x)}{(f'(x))^2}.$ $> \text{ Since } f(x^*) = 0, \text{ it follows that } \phi'(x^*) = 0.$ $> \text{ By continuity, there is an interval } I_{\delta} = [x^* \delta, x^* + \delta] \text{ about } x^* \text{ such that }$
 - $|\phi'(x)| \leq C < 1$ whenever $x \in I_{\delta}$.

 \diamond Suppose $x_0 \in I_{\delta}$. Then

$$|e_1| \le |\phi'(\xi_0)|e_0| \le C|e_0| \le C\delta < \delta,$$

and $x_1 \in I_{\delta}$.

 $\diamond\,$ Repeat by the same reasoning, we find that

$$|e_k| \le C|e_{k-1}| \le C^k|e_0|.$$

This proves the convergence.

• Quadratic Convergence:

 \diamond Since $\phi'(x^*) = 0$, we can write

$$\phi(x_k) - \phi(x^*) = \frac{1}{2}\phi''(\eta_k)(x_k - x^*)^2$$

where η_k lies between x_k and x^* .

 $\diamond~{\rm It~follows}$

$$e_{k+1} = \frac{1}{2}\phi''(\eta_k)e_k^2.$$
 (1)

 $\diamond\,$ Since η_k approaches x^* along with $x_k,$ it follows that

$$\lim_{k \to \infty} \frac{e_{k+1}}{e_k^2} = \frac{1}{2} \phi''(x^*) = \frac{f''(x^*)}{2f'(x^*)}.$$

That is,

$$e_{k+1} \approx \frac{f''(x^*)}{2f'(x^*)} (\eta_k) e_k^2.$$
 (2)

The Newton's method is preferred because of this *quadratic con*vergence property.