Convergence Analysis

- Assume x_0 is near enough to a zero x_* of the function $f(x)$ and $f'(x^*) \neq$ 0.
- Define $e_k = x_k x^*$. The convergence analysis involves three steps:
	- \diamond Obtain an expression for e_{k+1} in terms of e_k .
	- \diamond Use the expression to show that $e_k \longrightarrow 0$.
	- \diamond Assess how fast e_k converges to zero.
- Define the iteration function $\phi(x)$ for Newton's method by

$$
\phi(x) := x - \frac{f(x)}{f'(x)}.
$$

Observe the following two iterations.

- \Diamond A Newton step is equivalent to $x_{k+1} = \phi(x_k)$.
- \Diamond At the zero of $f, x^* = \phi(x^*).$
- Error Formula:
	- $\diamond e_{k+1} = \phi(x_k) \phi(x^*).$ $\diamond e_{k+1} = \phi'(\xi_k)e_k$ for some ξ_k between x_k and x^* . $\phi'(x) = \frac{f(x)f''(x)}{(f'(x))^2}$ $\frac{(x) f(x)}{(f'(x))^2}$. \triangleright Since $f(x^*) = 0$, it follows that $\phi'(x^*) = 0$. ► By continuity, there is an interval $I_δ = [x^* - δ, x^* + δ]$ about x^* such that

$$
|\phi'(x)| \le C < 1 \quad \text{whenever } x \in I_{\delta}.
$$

 \Diamond Suppose $x_0 \in I_\delta$. Then

$$
|e_1| \le |\phi'(\xi_0)|e_0| \le C|e_0| \le C\delta < \delta,
$$

and $x_1 \in I_\delta$.

 \diamond Repeat by the same reasoning, we find that

$$
|e_k| \le C|e_{k-1}| \le C^k|e_0|.
$$

This proves the convergence.

• Quadratic Convergence:

 \Diamond Since $\phi'(x^*)=0$, we can write

$$
\phi(x_k) - \phi(x^*) = \frac{1}{2}\phi''(\eta_k)(x_k - x^*)^2.
$$

where η_k lies between x_k and x^* .

 \diamond It follows

$$
e_{k+1} = \frac{1}{2}\phi''(\eta_k)e_k^2.
$$
 (1)

 \diamond Since η_k approaches x^* along with x_k , it follows that

$$
\lim_{k \to \infty} \frac{e_{k+1}}{e_k^2} = \frac{1}{2} \phi''(x^*) = \frac{f''(x^*)}{2f'(x^*)}.
$$

That is,

$$
e_{k+1} \approx \frac{f''(x^*)}{2f'(x^*)} (\eta_k) e_k^2.
$$
 (2)

The Newton's method is preferred because of this quadratic convergence property.