LU Decomposition

e We have seen that the Gaussian elimination process can be described
in terms of elementary matrix operations:
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e [t is easy to see that
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e It follows that if the Gaussian elimination process does not terminate
prematurely, then A can be decomposed into the product of a lower
triangular matrix, i.e., L, and and an upper triangular matrix, i.e.,
AM_ This is called the LU decomposition of A.

e The LU decomposition as described above can be carried out (without
pivoting) if and only if agz) #0fork=1,...,n—1.

¢ When a,(jc) = 0, it is possible to perform the elimination by in-
terchanging equations. Such a process of interchanging rows or
columns to bring a nonzero element to the pivoting position is
called mathematical pivoting.



