QR Decomposition

- \bullet The QR decomposition is perhaps the most important algorithmic idea \bullet in numerical linear algebra.
	- \Diamond Suppose $A \in R^{m \times n}$, $m \geq n$, and suppose rank $(A) = n$ (i.e., suppose A has linearly independent columns₋
	- \diamond The matrix A can always be decomposed as the product

$$
A = QR,\t\t(0.1)
$$

where $Q = R^{m \dots m}$ is an orthogonal matrix (i.e., $Q^2 Q = I_m$), and $R \in \mathbb{R}^{m \times n}$ is a matrix of the form $R = \begin{bmatrix} -1 \\ 0 \end{bmatrix}$ with $\begin{bmatrix} 0 \\ 0 \end{bmatrix}$ with $R_1 \in R^{n \times n}$ an upper triangular matrix-

 \triangleright Because of the zeros at the lower part of R, the decomposition can be simplied as

$$
A = Q_1 R_1 \tag{0.2}
$$

where $Q_1 \in R^{m \times n}$ is made of the first n columns of Q and satisfies $Q_1 Q_1 \equiv I_n$ (but it is not orthogonal) This is called the reduced QR factorization of A-1

- Suppose $A = QR$. Then the system $Ax = b$ can be solved from the triangular system $nx = Q_0$. This is an excellent method for solving linear systems but it is not the standard method for such problems-
	- \diamond Gaussian elimination requires only half as many numerical operations in the QR decomposition-
- \bullet The QR decomposition can also be used in solving least squares problems and eigenvalue problems-

Gram-Schmidt Orthogonalization

- Given a set of linearly independent column vectors $\{v_1,\ldots,v_n\} \subset R^m$ $(m \geq n)$, these vectors span an *n*-dimensional vector subspace of R^m . We could construct an orthonormal set of vectors $\{q_1, \ldots, q_n\}$ that spanses the same subspace- well as well as the well-controlled process process process process process process vides ^a recipe for accomplishing this
	- \diamond Set $w_1 := v_1$.
	- \Diamond Set, in general, for $\eta = 2, \ldots, n$

$$
w_j := v_j - \sum_{i=1}^{j-1} \frac{\langle w_i, v_j \rangle}{\langle w_i, w_i \rangle} w_i.
$$

- \triangleright It is really to be verified that $\langle w_i, w_j \rangle = 0$ for $i \neq j$, and that $w_j \neq 0.$
- \rhd If we define $q_j := \frac{w_j}{\|w_j\|_2}$, then $\langle q_i, q_j \rangle = \delta_{ij}$.
- \bullet The above relationship may be rewritten as

$$
v_1 = w_1;
$$

\n
$$
v_j = w_j + \sum_{i=1}^{j-1} \frac{\langle w_i, v_j \rangle}{\langle w_i, w_i \rangle} w_i.
$$

 \bullet In matrix form, we may record the above relationship as

$$
[v_1, \ldots, v_n]
$$
\n
$$
= [w_1, \ldots, w_j, \ldots, w_n] \begin{bmatrix}\n1 & \frac{\langle w_1, v_2 \rangle}{\langle w_i, w_1 \rangle} & \frac{\langle w_1, v_3 \rangle}{\langle w_1, w_1 \rangle} \\
0 & 1 & \frac{\langle w_2, v_3 \rangle}{\langle w_2, w_2 \rangle} \\
0 & 0 & 1 \\
\vdots & \vdots & & \ddots \\
0 & 0 & 0 & \ldots & 1\n\end{bmatrix}.
$$

 $\text{Hd} \cup \text{Id}$, $V = VV \text{Id}$.

- \Diamond Let $D := \text{ diag } \{ \frac{1}{\|w_1\|}, \dots, \}$ $\frac{1}{\|w_1\|}, \ldots, \frac{1}{\|w_n\|}\}$ denote the scaling factors.
- \Diamond Then $V = W D D^{-1} R = Q_1 R_1$ where $Q_1 := W D$ and $R_1 := D^{-1} R$.
- \bullet for our consideration, identify the matrix V as our original matrix $A.$
	- \diamond The Gram-Schmidt process offers a numerical procedure to compute the QR decomposition-
	- \diamond In practice, the sequence of Gram-Schmidt calculations turns to pe numerically unstable. Fortunately, there are better way, $\,$
	- \diamond The insight we obtained from the Gram-Schmidt process is that the columns of A and columns of Q generate the same range space-