QR via Householder Transformation

• Let $u \in \mathbb{R}^m$ be a column unit vector. The associated Householder matrix is defined to be

$$V := I - 2uu^T.$$

- \diamond The matrix V is an orthogonal matrix.
- $\diamond~$ The transformation

$$Vx = x - 2uu^T x.$$

has a special meaning: It is the *reflection* of x with respect to the hyperplane normal to the vector u.

- The reflection property of the Householder transformation may be applied to construct the QR decomposition.
 - ♦ The idea: Given $x \in \mathbb{R}^m$, find an Householder matrix V such that $Vx = \pm e\sigma$ where $\sigma = ||x||_2$ (Why is such a quantity σ needed here?).
 - \diamond Two choices of u:

$$u_{1} := \frac{\frac{x}{\sigma} + e_{1}}{\|\frac{x}{\sigma} + e_{1}\|_{2}},$$

$$u_{2} := \frac{\frac{x}{\sigma} - e_{1}}{\|\frac{x}{\sigma} - e_{1}\|_{2}}.$$
(0.1)

 \diamond Suppose the second choice is used, then $Vx = [\sigma, 0, \dots, 0]^T$.

• Applied to $A \in \mathbb{R}^{m \times n}$ with $m \ge n$, let x denote the first column of A.

 $\diamond~$ There exists an orthogonal matrix $V_1 \in R^{m \times n}$ such that

$$A^{(2)} := V_1 A = \begin{bmatrix} \times & \times & \dots & \times \\ 0 & \times & & \\ \vdots & & B^{(2)} & \\ 0 & \times & & \times \end{bmatrix}$$

• By a similar argument, there exists an orthogonal matrix $V_2^{'}$ of size $(m-1)\times(m-1)$ such that

$$V_{2}'B^{(2)} = \begin{bmatrix} \times & \times & \dots & \times \\ 0 & \times & & \\ & & & \\ 0 & \times & & \times \end{bmatrix}.$$

$$\diamond \text{ Now let } V_{2} := \begin{bmatrix} 1 & 0 \\ 0 & V_{2}' \end{bmatrix} \in R^{m \times n}. \text{ Then}$$

$$V_{2}A^{(2)} = \begin{bmatrix} \times & \times & \dots & \times \\ 0 & \times & & \\ 0 & \times & & \\ & & B^{(3)} \\ 0 & 0 & \times & \times \end{bmatrix}.$$

• Continuing this procedure n-1 times, we obtain

$$A^{(n)} := V_{n-1}A^{(n-1)} - V_{n-1}\dots V_1A = \begin{bmatrix} \times & \times & \dots & \times \\ & 0 & & \times \\ & & \ddots & \\ & & & \times \\ 0 & & & 0 \\ 0 & \dots & 0 \end{bmatrix} = R.$$

 $\diamond~{\rm Let}$

$$Q := V^{-1} := (V_{n-1} \dots V_1)^{-1}.$$

Then Q is also an orthogonal matrix.

2