Least Squares Problems

- Data fitting (or parameter estimation) is an important technique used for modeling in many areas of disciplines.
 - ♦ Assuming a physical phenomenon is modeled by a relationship

$$y = f(z; x_1, \dots, x_n).$$
 (0.1)

- \triangleright f is a prescribed function determined up to values of x_1, \ldots, x_n .
- \triangleright z is the control variable.
- \triangleright y is the expected response to z.
- ♦ After *m* experiments $(m \ge n)$, we have collected *m* observed quantities $(z_i, y_i), i = 1, ..., m$.
 - ▷ Due to measurement errors (called noise), (z_i, y_i) may not satisfy (0.1) exactly.
 - \triangleright Seek to adjust the parameters x_1, \ldots, x_n so that the expression

$$g(x_1, \dots, x_n) := \sum_{i=1}^m \|y_i - f(z_i; x_1, \dots, x_n)\|^2 \qquad (0.2)$$

is minimized.

- \diamond When the norm used in (0.2) is either the 2-norm or the Frobenius norm, we say we have a *least squares problem*.
- An example: Polynomial least squares fitting.
 - ♦ Suppose the function f in (0.1) is an (n-1)-th degree polynomial

$$f(z; x_1, \dots, x_n) = x_1 z^{n-1} + \dots + x_{n-1} z + x_n.$$
(0.3)

♦ The data fitting problem is to solve the system

$$\begin{bmatrix} z_1^{n-1} & z_1^{n-2} & \dots & z_1 & 1 \\ z_2^{n-1} & & & & \\ \vdots & & & & & \\ z_m^{n-1} & z_m^{n-1} & \dots & z_m & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix} = \begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_m \end{bmatrix}$$
(0.4)

for the coefficients (x_1, \ldots, x_n) .

- \diamond The system (0.4) is overdetermined, so generally there is no solution.
- \diamond Instead, we consider the linear least squares problem

$$\min_{x \in \mathbb{R}^n} \|Ax - b\|_2^2 \tag{0.5}$$

where $A \in \mathbb{R}^{m \times n}$, $b \in \mathbb{R}^m$ are known quantities.

- A solution through the QR decomposition.
 - ♦ There exist an orthogonal matrix $Q \in R^{m \times m}$ and $R = \begin{bmatrix} R_1 \\ 0 \end{bmatrix} \in$

 $\mathbb{R}^{m \times n}$ with \mathbb{R}_1 upper triangular such that

$$Q^T A = R.$$

- ♦ Recall that orthogonal transformations leave the norm $||x||_2$ of a vector x invariant $(||Vx||_2 = \sqrt{x^T V^T V x} = ||x||_2)$.
- $\diamond \ \mbox{Denoting} \ Q^T b := [h_1^T, h_2^T]^T, \ \mbox{then}$

$$\begin{aligned} \|Ax - b\|_{2}^{2} &= \|Q^{T}(Ax - b)\|_{2}^{2} \\ &= \|\begin{bmatrix} R_{1} \\ 0 \end{bmatrix} x - \begin{bmatrix} h_{1} \\ h_{2} \end{bmatrix}\|_{2}^{2} = \|R_{1}x - h_{1}\|_{2}^{2} + \|h_{2}\|_{2}^{2}. \end{aligned}$$

♦ $||Ax - b||_2$ is minimized if x is chosen so that

$$R_1 x = h_1.$$
 (0.6)