Singular Value Decomposition

- \bullet The singular value decomposition (SVD) is a matrix factorization that serves both as the first computational step in many numerical algorithms and as the first conceptual step in many theoretical studies.
- Given $A \in \mathbb{R}^{m \times n}$ $(m \geq n)$, the image of the unit sphere in \mathbb{R}^n under A is a hpyerempse (of dimension n) in R_{α} .
	- \Diamond The unit vectors $u_i \in R^m$ in the directions of the principal semiaxes of the hyperellipse are called the *left singular vectors* of A.
	- \Diamond The unit vectors $v_i \in R^n$ in the directions of the preimage of the principal semiaxes of the hyperellipse are called the right singular vectors of A
	- \diamond The lengths σ_i of the principal semiaxes of the hyperellipse are called the singular values of A
		- \triangleright The above quantities are related to each other by the relationship

$$
Av_i = \sigma_i u_i. \tag{0.1}
$$

- \triangleright It is clear that all u_i , $i = 1, \ldots, n$ are mutually orthogonal.
- \triangleright It will be shown that all v_i , $i = 1, \ldots n$ are also mutually orthogonal
- Recall that $A^T A \in R^{n \wedge n}$ is symmetric and positive semi-definite.
	- \diamond A^*A has a complete set of eigenvectors.
	- \diamond All eigenvalues of A^\ast A are nonnegative.
	- \circ Denote the positive eigenvalues of $A^T A$ by $\sigma_1^2 \geq \ldots \geq \sigma_r^2 > 0$.
		- It can be proved in this case of the case of the contract of the contract of the contract of the contract of t
	- \diamond Denote the normalized (and orthogonal) eigenvector of A^* A associated with o_i by v_i
- \bullet Some important observations:
	- \diamond The two matrices $A^T A$ and $A A^T$ have the same positive eigenvalues
	- \diamond Av_i is an eigenvector of AA^* associated with eigenvalue $\sigma_i^*.$
	- \Diamond The vector $u_i := Av_i/\sigma_i$ is a normalized eigenvector of AA^i .
- \bullet The singular value decomposition of A:
	- \Diamond Let $V := [v_1, \ldots, v_n] \in R^{n \land n}$ whose columns v_i are orthonormal eigenvectors of $A^T A$.
	- \Diamond Define $U := [u_1, \ldots, u_m] \in R^{m \wedge m}$ where
		- \boldsymbol{y} , and an aviation of \boldsymbol{y} and \boldsymbol{y}
		- \triangleright For $j = r + 1, \ldots, m, \{u_{r+1}, \ldots, u_m\}$ are orthonormal eigenvectors corresponding to the zero eigenvalue of AAT
	- \Diamond Define $\Sigma := \text{diag}\{\sigma_1, \ldots, \sigma_r\}.$
	- \diamond With U, Σ and V given above, it must be true that

$$
A = U \begin{bmatrix} \Sigma & 0 \\ 0 & 0 \end{bmatrix} V^T.
$$
 (0.2)

- $\mathcal{L} = \mathcal{L} \mathcal{L} = \mathcal{L$
- Observe that

$$
U^T A V = \begin{bmatrix} U_1^T \\ U_2^T \end{bmatrix} A [V_1, V_2] = \begin{bmatrix} U_1^T A V_1 & U_1 A V_2 \\ U_2^T A V_1 & U_2^T A V_2 \end{bmatrix}.
$$

 $\nu_1 \triangleright$ Note that $Av_2 = 0$, $U_2^T Av_1 = U_2^T U_1 \iota_2 = 0$ and $U_1^T Av_1 = \iota_2$ by the choice of U .

 $\sqrt{2}$