Singular Value Decomposition

- The singular value decomposition (SVD) is a matrix factorization that serves both as the first computational step in many numerical algorithms and as the first conceptual step in many theoretical studies.
- Given $A \in \mathbb{R}^{m \times n}$ $(m \ge n)$, the image of the unit sphere in \mathbb{R}^n under A is a hyperellipse (of dimension n) in \mathbb{R}^m .
 - ◇ The unit vectors $u_i \in \mathbb{R}^m$ in the directions of the principal semiaxes of the hyperellipse are called the *left singular vectors* of A.
 - ♦ The unit vectors $v_i \in \mathbb{R}^n$ in the directions of the preimage of the principal semiaxes of the hyperellipse are called the *right singular* vectors of A.
 - \diamond The lengths σ_i of the principal semiaxes of the hyperellipse are called the *singular values* of A.
 - ▷ The above quantities are related to each other by the relationship:

$$Av_i = \sigma_i u_i. \tag{0.1}$$

- \triangleright It is clear that all u_i , $i = 1, \ldots, n$ are mutually orthogonal.
- \triangleright It will be shown that all v_i , $i = 1, \ldots n$ are also mutually orthogonal.
- Recall that $A^T A \in \mathbb{R}^{n \times n}$ is symmetric and positive semi-definite.
 - $\diamond A^T A$ has a complete set of eigenvectors.
 - \diamond All eigenvalues of $A^T A$ are nonnegative.
 - \diamond Denote the positive eigenvalues of $A^T A$ by $\sigma_1^2 \ge \ldots \ge \sigma_r^2 > 0$.
 - \triangleright It can be proved (but not done in this class) that $r = \operatorname{rank}(A)$.
 - ♦ Denote the normalized (and orthogonal) eigenvector of $A^T A$ associated with σ_i^2 by v_i

- Some important observations:
 - $\diamond\,$ The two matrices A^TA and AA^T have the same positive eigenvalues.
 - $\diamond Av_i$ is an eigenvector of AA^T associated with eigenvalue σ_i^2 .
 - \diamond The vector $u_i := Av_i/\sigma_i$ is a normalized eigenvector of AA^T .
- The singular value decomposition of A:
 - ◇ Let $V := [v_1, \ldots, v_n] \in \mathbb{R}^{n \times n}$ whose columns v_i are orthonormal eigenvectors of $A^T A$.
 - \diamond Define $U := [u_1, \dots, u_m] \in \mathbb{R}^{m \times m}$ where
 - \triangleright For $j = 1, \ldots, r, u_j := Av_j/\sigma_j$, and
 - \triangleright For j = r + 1, ..., m, $\{u_{r+1}, ..., u_m\}$ are orthonormal eigenvectors corresponding to the zero eigenvalue of AA^T .
 - $\diamond \text{ Define } \Sigma := \text{diag}\{\sigma_1, \ldots, \sigma_r\}.$
 - \diamond With U, Σ and V given above, it must be true that

$$A = U \begin{bmatrix} \Sigma & 0\\ 0 & 0 \end{bmatrix} V^T.$$
 (0.2)

- ▷ Write $U = [U_1, U_2], V = [V_1, V_2].$
- \triangleright Observe that

$$U^T A V = \begin{bmatrix} U_1^T \\ U_2^T \end{bmatrix} A[V_1, V_2] = \begin{bmatrix} U_1^T A V_1 & U_1 A V_2 \\ U_2^T A V_1 & U_2^T A V_2 \end{bmatrix}.$$

 \triangleright Note that $AV_2 = 0$, $U_2^T AV_1 = U_2^T U_1 \Sigma = 0$ and $U_1^T AV_1 = \Sigma$ by the choice of U.

2