Eigenvalue Problems

- $\bullet\,$ Eigenvalue problems are particularly interesting in scientific computing
	- \diamond Eigenvalue analysis is an important practice in many fields of engineering or physics
	- \diamond Eigenvalue analysis play an important role in the performance of \lozenge many numerical algorithms
	- \diamond There are powerful algorithms for finding eigenvalues, yet these algorithms are far from obvious
- $\bullet\,$ What is a general eigenvalue problem:
	- \diamond Given $n \times n$ matrices A and B, find numbers λ such that the equation

$$
Ax = \lambda Bx \tag{0.1}
$$

is satisfied for some nontrivial vector $x \neq 0$.

 \diamond If B is invertible, then (0.1) can be reduced to

$$
Cx = \lambda x.\tag{0.2}
$$

- \diamond The nonzero vector x is called an *eigenvector* and the correspond- \mathbf{m} scalar \mathbf{m} called an eigenvalue of the pair \mathbf{m} \mathbf{m} is the matrix $C.$
- \diamond Generally, λ and x are complex-valued.
- $\bullet\,$ Finding the solution of eigensystems is a fairly complicated procedure. $\,$
	- \diamond It is at least as difficult as finding the roots of polynomials.
	- \diamond -Any numerical method for solving eigenvalue problems is expected to be iterative in nature. No direct method is available.
	- \diamond -Algorithms for solving eigenvalue problems include the power method, subspace iteration, the QR algorithm, the Jacobi method, the Arnoldi method and the Lanczos algorithm
- \bullet Spectral decomposition:
	- \diamond If a matrix A of size $n \times n$ has (a complete set of) n eigenvectors $\begin{array}{ccc} 1 & 1 & 0 \end{array}$ with corresponding $\begin{array}{ccc} 0 & 0 \end{array}$. Then we may be may be may be about the corresponding $\begin{array}{ccc} 0 & 0 \end{array}$

$$
AX = X\Lambda,
$$

where $X = [x_1, \ldots x_n]$ and $\Lambda = \text{diag}\{\lambda_1, \ldots, \lambda_n\}$. If X is invertible, the matrix A then has a spectral decomposition

$$
A = X\Lambda X^{-1}.\tag{0.3}
$$

- \diamond Note that not all matrices will have a spectral decomposition. If A does have a spectral decomposition, we say A is *diagonalizable*.
- \bullet Generically, $almost$ all matrices are diagonalizable. But there are de fective matrices For example the matrix J where

$$
J = \left[\begin{array}{ccc} 2 & 1 & 0 \\ 0 & 2 & 1 \\ 0 & 0 & 2 \end{array} \right]
$$

has eigenvalues - and multiplicity in the multiplicity of the multiplicity on large states and the control one eigenvector of the control one eigenvector of the control one eigenvector of the control one eigenvector on the corresponding to it. J is not diagonalizable.

- \bullet If X is nonsingular, then A and X AX \lnot gave the same eigenvalues. A transformation by the relationship $A A X$ is called a *similarity trans*formation
	- \diamond To find eigenvalues of a matrix A , it suffices to transform A by similarity transformations to an upper triangular matrix.
	- \diamond Schur decomposition: Every square matrix A can be transformed by unitary similarity transformation into an upper triangular ma trix, i.e., there exist an unitary matrix $Q \in C^{n \times n}$ such that

$$
A = QTQ^*,\tag{0.4}
$$

where T is upper triangular. This is the principal basis of numerical algorithms for eigenvalue computation

 $\sqrt{2}$