Power Method

- Given a matrix $A \in C^{n \wedge n}$, the power method is an iteration procedure defined as follows:
	- \Diamond Begin with an arbitrary $x^{(0)} \in C^n$.
	- \diamond Repeatedly define the sequence $\{x^{(k)}\}$ by

$$
w^{(k)} := Ax^{(k-1)} x^{(k)} := \frac{w^{(k)}}{\|w^{(k)}\|_{\infty}}
$$

for a series of the convergence of

- \bullet The normalization is for the purpose of avoiding overflow or underflow.
	- \diamond Any norm can be used for the normalization. The sup-norm is particularly convenient
	- \diamond The normalization needs not be done at every step because

$$
x^{(k)} = \frac{Ax^{(k-1)}}{\|Ax^{(k-1)}\|_{\infty}} = \frac{A\left(\frac{w^{(k-1)}}{\|w^{(k-1)}\|_{\infty}}\right)}{\|A\left(\frac{w^{(k-1)}}{\|w^{(k-1)}\|_{\infty}}\right)\|_{\infty}}
$$

$$
= \frac{A^2x^{(k-2)}}{\|A^2x^{(k-2)}\|_{\infty}} = \frac{A^kx^{(0)}}{\|A^kx^{(0)}\|_{\infty}}.
$$

- Assume A is diagonalizable with eigenvalues $|\lambda_1| > |\lambda_2| \geq \ldots \geq |\lambda_n|$ and corresponding to the corresponding to \mathbf{r}
	- \Diamond Write $x^{(0)} = \sum_{i=1}^{n} \alpha_i x_i$. (This is possible because A is assumed to be diagonalizable
	- \diamond Note that

$$
Ax^{(0)} = \sum_{i=1}^{n} \alpha_i \lambda_i x_i
$$

$$
A^k x^{(0)} = \sum_{i=1}^{n} \alpha_i \lambda_i^k x_i = \lambda_1^k \left(\alpha_1 x_1 + \sum_{i=2}^{n} \alpha_i \left(\frac{\lambda_i}{\lambda_1} \right)^k x_i \right).
$$

- \Diamond Assume $\alpha_1 \neq 0$. (This is guaranteed if $x^{(0)}$ is selected randomly.)
- \Diamond Note that as $k \to \infty$, the vector $A^{\alpha}x^{\alpha}$ behaves like $\alpha_1\lambda_1^{\alpha}x_1$ in ω becomes less and l significant.
- \Diamond Normalization makes $x^{(k)} \rightarrow \frac{\alpha_1 \lambda_1^2}{\| \lambda_1^k \| \cdot \| \cdot \| \cdot \| \cdot}$. $\overline{|\alpha_1 \lambda_1^k|}$ $\overline{||x_1||_{\infty}}$
- \diamond The sequence $\{x^{(k)}\}$ converges to an eigenvector associated with the eigenvalue λ_1 .

$$
\diamond
$$
 Also, $w^{(k+1)} = Ax^{(k)} \to \lambda_1 x^{(k)}$. So $\frac{w^{(k+1)}\!j}}{x_j^{(k)}} \to \lambda_1$.

 \bullet The rate of convergence of power method depends on the ratio $\frac{\gamma_2}{\lambda_1}.$