Power Method

e Given a matrix A € C™*", the power method is an iteration procedure
defined as follows:
o Begin with an arbitrary z(0) € C".
o Repeatedly define the sequence {z(} by
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for K =1,2,... until convergence.

e The normalization is for the purpose of avoiding overflow or underflow.

¢ Any norm can be used for the normalization. The sup-norm is
particularly convenient.

¢ The normalization needs not be done at every step because
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e Assume A is diagonalizable with eigenvalues |A;| > |Ao| > ... > |\,]
and corresponding eigenvectors xy,...x,.

o Write (9 = >, aix;. (This is possible because A is assumed to
be diagonalizable.)

¢ Note that
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Assume «; # 0. (This is guaranteed if (?) is selected randomly.)

o Note that as k — oo, the vector A¥2() behaves like ay \fx; in
the sense that contribution from x»,...x, becomes less and less
significant.
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¢ Normalization makes z
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The sequence {z(*)} converges to an eigenvector associated with
the eigenvalue \;.

o Also, w* ™D = Az®) — A;2®). So w(k:)))j — A1
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e The rate of convergence of power method depends on the ratio i—f



