Power Method

- Given a matrix $A \in C^{n \times n}$, the power method is an iteration procedure defined as follows:
 - ♦ Begin with an arbitrary $x^{(0)} \in C^n$.
 - \diamond Repeatedly define the sequence $\{x^{(k)}\}$ by

$$w^{(k)} := Ax^{(k-1)}$$
$$x^{(k)} := \frac{w^{(k)}}{\|w^{(k)}\|_{\infty}}$$

for $k = 1, 2, \ldots$ until convergence.

- The normalization is for the purpose of avoiding overflow or underflow.
 - ◊ Any norm can be used for the normalization. The sup-norm is particularly convenient.
 - ♦ The normalization needs not be done at every step because

$$\begin{aligned} x^{(k)} &= \frac{Ax^{(k-1)}}{\|Ax^{(k-1)}\|_{\infty}} &= \frac{A\left(\frac{w^{(k-1)}}{\|w^{(k-1)}\|_{\infty}}\right)}{\|A\left(\frac{w^{(k-1)}}{\|w^{(k-1)}\|_{\infty}}\right)\|_{\infty}} \\ &= \frac{A^2x^{(k-2)}}{\|A^2x^{(k-2)}\|_{\infty}} &= \frac{A^kx^{(0)}}{\|A^kx^{(0)}\|_{\infty}}. \end{aligned}$$

- Assume A is diagonalizable with eigenvalues $|\lambda_1| > |\lambda_2| \ge \ldots \ge |\lambda_n|$ and corresponding eigenvectors $x_1, \ldots x_n$.
 - ♦ Write $x^{(0)} = \sum_{i=1}^{n} \alpha_i x_i$. (This is possible because A is assumed to be diagonalizable.)
 - $\diamond~$ Note that

$$Ax^{(0)} = \sum_{i=1}^{n} \alpha_i \lambda_i x_i$$
$$A^k x^{(0)} = \sum_{i=1}^{n} \alpha_i \lambda_i^k x_i = \lambda_1^k \left(\alpha_1 x_1 + \sum_{i=2}^{n} \alpha_i \left(\frac{\lambda_i}{\lambda_1} \right)^k x_i \right).$$

- \diamond Assume $\alpha_1 \neq 0$. (This is guaranteed if $x^{(0)}$ is selected randomly.)
- \diamond Note that as $k \to \infty$, the vector $A^k x^{(0)}$ behaves like $\alpha_1 \lambda_1^k x_1$ in the sense that contribution from $x_2, \ldots x_n$ becomes less and less significant.
- $\diamond \text{ Normalization makes } x^{(k)} \to \frac{\alpha_1 \lambda_1^k}{|\alpha_1 \lambda_1^k|} \frac{x_1}{\|x_1\|_{\infty}}.$
- ♦ The sequence $\{x^{(k)}\}$ converges to an eigenvector associated with the eigenvalue λ_1 .
- $\diamond \text{ Also, } w^{(k+1)} = Ax^{(k)} \to \lambda_1 x^{(k)}. \text{ So } \frac{w^{(k+1)})_j}{x_j^{(k)}} \to \lambda_1.$
- The rate of convergence of power method depends on the ratio $\frac{\lambda_2}{\lambda_1}$.