Shifted QR Algorithm

- The shift can be used in the QR algorithm in exactly the same way that use in the inverse power method to accelerate the convergence.
- QR Algorithm with Origin Shift:
 - \diamond Given $A \in \mathbf{R}^{\mathbf{n} \times \mathbf{n}}$, define $A_1 := A$.
 - \diamond For $k = 1, 2, \dots$, iterate until convergence:
 - \triangleright Select a shift factor c_k ;
 - \triangleright Calculate the QR decomposition,

$$A_k - c_k I = Q_k R_k;$$

 \triangleright Define

$$A_{k+1} := R_k Q_k + c_k I.$$

- Note that $R_k = Q_k^T(A_k c_k I)$. So $A_{k+1} = Q_k^T(A_k c_k I)Q_k + c_k I = Q_k^T A_k Q_k$. That is, A_{k+1} and A_k are orthogonally similar.
- Wilkinson's shift:
 - \diamond Suppose A_k is upper Hessenberg.
 - ♦ The shift factor c_k may be determine from the eigenvalues, say μ_k and ν_k , of the bottom 2 × 2 submatrix of A_k .
 - ♦ If both μ_k and ν_k are real, we take c_k to be μ_k or ν_k according to whether $|\mu_k a_{nn}^{(k)}|$ or $|\nu_k a_{nn}^{(k)}|$ is smaller.
 - \diamond If $\mu_k = \overline{\nu}_k$, then we choose $c_k = \Re \nu_k$.
- Experimental results show that Wilkinson's shift is highly effective.