Iteration Methods for Linear Systems

- Many linear systems arised in real-world applications are large and sparse.
 - ♦ Storage of data on a computer becomes a serious concern.
 - ◊ Overhead in a direct method, such as the Gaussian elimination, usually becomes unbearable.
 - ♦ Special techniques taking into account sparsity preservation, such as SPARSPAK, are available.
 - \diamond Would like to solve Ax = b with the matrix A intact and storage of only a few vectors.
- Motiviation of an Iterative Method:
 - \diamond Let \tilde{x} be an approximate solution to the system Ax = b.
 - \diamond Define the *residual* by

$$r := b - A\tilde{x}.$$

 \diamond The error $e := x - \tilde{x}$ satisfies the equation

$$Ae = r. (0.1)$$

- ♦ If we could solve (0.1) exactly, then $x := \tilde{x} + e$ would be the exact solution.
 - \triangleright Note that solving (0.1) is as hard as the original problem.
 - \triangleright Instead, we solve

$$Se = r \tag{0.2}$$

where S is an approximation to A.

 \triangleright The difference between A and S here is that (0.2) is much easier to be solved than (0.1).

- \triangleright Adding approximate correction to the approximate solution \tilde{x} gives what we hope is a better approximate to the the true solution.
- A Prototype Iterative Algorithm:
 - $\diamond x^{\text{old}}$: = The current approximation to x;
 - \diamond Compute the residual $r := b Ax^{\text{old}};$
 - \diamond Solve Se = r for the unknown e;

 $\diamond~{\rm Set}$

$$x^{\text{new}} := x^{\text{old}} + e; \tag{0.3}$$

- \diamond Repeat the cycle.
- Important Observation:
 - \diamond Multiplying (0.3) by S yields

$$Sx^{new} = Sx^{old} + Se$$

= $Sx^{old} + b - Ax^{old}$
= $(S - A)x^{old} + b := Tx^{old} + b$ (0.4)

where

$$A := S - T \tag{0.5}$$

is called a *splitting* of the matrix A.

- \diamond If the iterates converges to a limit x, then $x = x^{old} = x^{new}$ and, by (0.4), we see that Ax = b. In other words, a limit point of the iteration scheme (0.4) is a solution of the original system.
- \diamond It remains to determine the splitting so that
 - \triangleright The sequence generated will converge.
 - \triangleright The convergence rate is faster.