Some Convergence Theorems

- The following three statements are equivalent:
 - $\diamond \lim_{n \to \infty} H^n = 0.$
 - $\lim_{n \to \infty} ||H^n|| = 0$ for some norm.
 - ♦ The spectral radius $\rho(H) < 1$.
- Suppose x = Hx + d has a unique solution x^* . Then the sequence $\{x^{(k)}\}$ computed from the scheme

$$x^{new} = Hx^{old} + d \tag{0.1}$$

with any starting point $x^{(0)}$ converges to x^* if and only $\rho(H) < 1$.

- ♦ Observe that $x^{(k+1)} x^* = H(x^{(k)} x^*) = \ldots = H^{k+1}(x^{(0)} x^*).$
- ♦ If $\rho(H) < 1$, then $||x^{(k+1)} x^*|| \le ||H^{k+1}|| ||x^{(0)} x^*|| \to 0$. Convergence follows from the above theorem.
- ◇ Suppose $||x^{(k)} x^*|| \to 0$ for every $x^{(0)}$. Take $x^{(0)} = x^* + e_i$. Then $x^{(k)} x^* = H^k e_i$ = The *i*-th column of H^k . Use the $|| \cdot ||_1$ norm, then we have ||The *i*-th column of $H^k ||_1 \to 0$ as $k \to \infty$. Since *i* is arbitrary, it follows that $||H^k||_1 \to 0$.
- A main task in the splitting A = S T is to make sure that the spectral radius of the iteration matrix $H = S^{-1}T$ is strictly less than 1.
- Both the Jacobi method and the Gauss-Seidel method converge if A is strictly diagonally dominant.
- If A is symmetric and positive definite, then the Gauss-Seidel method converges.
- (Ostrowski and Reich Theorem) Let A be real, symmetric and positive definite. Then the SOR method converges if and only if $0 < \omega < 2$.