
Chapter 1

Error Analysis

Numerical analysis is concerned with the process by which mathematical prob-
lems can be solved by the operations of arithmetics. It is also concerned with
choosing that procedure which is best suited to the solution of a particular prob-
lem. A paramount goal in numerical analysis is to access the accuracy of the
results of calculations. Errors contained in the numerical answers to problems
generally arise in two areas:

1. Those inherent in the mathematical formulation of the problems, such as

(a) The error incurred when the mathematical statement of a problem
is only an approximation to the physical situation;

(b) The error due to inaccuracies in the physical data.

2. Those incurred in the numerical computation process, such as

(a) Programming blunder;

(b) Truncation error, i.e., inexact evaluation of mathematical operators;

(c) Roundoff errors, i.e., inexact arithmetic calculations.

Type (1) errors are beyond the control of the calculation and are usually
negligible. It is understood, however, that the worth of a computed solution
must be carefully weighed against these errors. Programming blunder which
results in the correct calculation of the wrong result usually can be detected or
verified. It is the last two sources of computational error that chiefly interest us
and should be controlled by any feasible algorithm.

1.1 Measurement of Errors

In dealing with vectors, matrices and functions, the problem of measuring their
exactness to a certain given quantity is usually done by the concept of norms.

1

2 CHAPTER 1. ERROR ANALYSIS

Definition 1.1.1 A norm ‖ · ‖ on a vector space V is a real-valued function on
V such that for every u, v ∈ V ,

1. ‖v‖ ≥ 0; ‖v‖ = 0 if and only if v = 0;

2. ‖αv‖ = |α|‖v‖ for every scalar α;

3. ‖u+ v‖ ≤ ‖u‖+ ‖v‖. (The triangle inequality)

Examples. In the Rn space,

1. For p ≥ 1, ‖v‖p := (
n∑

i=1

|vi|p)1/p. (Lp-norm)

2. ‖v‖∞ := max
1≤i≤n

|vi|. (L∞-norm)

3. Given wi > 0, ‖v‖p,w := (
n∑

i=1

wi|vi|p)1/p. (Weighted Lp-norm).

Examples. In the function space C[a, b] := The space of all functions continu-
ous on [a, b],

1. ‖f‖p := (
∫ b

a
|f(x)|pdx)1/p.

2. ‖f‖∞ := max
x∈[a,b]

|f(x)|. (Uniform norm)

Examples. In the matrix space Rn×m,

1. ‖A‖ := sup
‖x‖=1,x∈Rm

‖Ax‖. (Induced norm)

(a) ‖A‖1 = max
1≤j≤m

n∑
i=1

|aij |.

(b) ‖A‖∞ = max
1≤i≤n

m∑
j=1

|aij |.

2. ‖A‖F := (
n∑

j=1

m∑
i=1

|aij |2)1/2. (Frobenius norm)

1.2 Representation of Numbers

There are two fundamentally different concepts of representing numbers in a
computing machine:

1.2. REPRESENTATION OF NUMBERS 3

1. On an analog computer, the numbers are represented by some physical
quantities, e.g., the length of a bar or the intensity of a voltage whereas the
arithmetics are simulated through some physical measurements. There-
fore, precision in physical measurements limits the accuracy of analog
devices.

2. On a digital computer, the numbers are represented by a sequence of digits
where each digit is represented by a specific physical quantity. The arith-
metic is similar to ordinary pencil-and-paper arithmetic. The accuracy
of digital computers is limited by the number of places, the word length,
used to internally represent a number.

Most of the modern computers are digital computers. For a word of length
n, a number can be stored in several different fashions:

(a) Fixed-point representation where the position of the decimal (binary)
point is fixed. This representation is very rarely used in nontrivial cal-
culations.

(b) Floating-point representation where the position of the decimal (binary)
is not fixed at the outset; rather its position with respect to the first digit
is indicated for each number separately.

Definition 1.2.1 A normalized floating-point number is a number of the form

±.d1 . . . dt × βe

where β = integer = fixed base; e = integer = exponent; t = number of digits;
1 ≤ d1 ≤ β − 1; 0 ≤ di ≤ β − 1 for 2 ≤ i ≤ t. The fractional part .d1 . . . dt =
d1

β + d2

β2 + . . .+ dt

βt is called the mantissa of the floating-point number.

In a digital computer with word length n, a floating-point number is stored
as follows:

• • • • • • • • • • • •

�

sign
�

exponent
�

mantissa

•
± 1 q 1 t

where each bar represents either a bit (a binary digit), a hexadecimal (base 16)
or so on. Note that the exponent portion should be able to represent integers
from 0 to βq − 1 (why?), but with some shift, say by −βq−1, the range of
exponent would be from −βq−1 to βq−1(β − 1)− 1. In general, we denote this
range by saying −m ≤ e ≤M , and the system of all floating-point numbers by
F (β, t,m,M).
Example. Consider the system of floating-point numbers F (2, 3, 1, 2):

-1 0 1 2
.100 4/16 4/8 4/4 4/2
.101 5/16 5/8 5/4 5/2
.110 6/16 6/8 6/4 6/2
.111 7/16 7/8 7/4 7/2

4 CHAPTER 1. ERROR ANALYSIS

Note that with each fixed e, in the interval [βe−1, βe), each floating-point is
equally spaced by βe−t. The distribution on the real line is as follows:

0 1
4

1
2 1 2 3 4

Example. With single precision on an IBM machine, β = 16, t = 6, m =
−64, M = 63, so the range of floating-point numbers is

5.398× 10−79 ≈ 16−65 ≤ | real | ≤ 1663 − 1657 ≈ 7.237× 1075.

Any number outside this range is said to be overflow or underflow, respectively.
Example. With single precision on a CRAY machine, β = 2, t = 52,m = −975,
M = 1071, so the range of floating-point numbers is

1.50× 10−294 ≤ | real | ≤ 2.5× 10322.

Example. The IEEE Binary Floating Point Arithmetic Standard for a nor-
malized single-precision 32-bit word specifies 8 bits for the exponent, 23 bits
with one bit hidden for the mantissa. The exponent is biased by 127. The
floating-point number is described by

(−1)S ∗ 2E−Bias ∗ 1.F

where S is the sign of the number, E is the exponent of the number in base 2,
and F is the fractional part of the number’s mantissa. On the other hand, for
a 64-bit word, IEEE specifies 11 bits for the exponent, biased by 1023, 52 bits
with one bit hidden for the mantissa.
Remark. The set F (β, t,m,M) of floating-point numbers is not a continuum
or an infinite set. In fact, it has exactly 2(β − 1)βt−1(M +m+ 1) + 1 numbers
in it.

A number x /∈ F (β, t,m,M) which is not a machine number has to be
approximated by a number which is. Usually such a machine-number approxi-
mation rd(x) of x is obtained by rounding:

Definition 1.2.2 The rounded value mr to t bits of a mantissa m of more than
t bits, with base β, is defined to be

mr := {β−t �βtm+ 0.5	, if m > 0, β−t
βtm− 0.5�, if m < 0

where the ceiling function
x� := the smallest integer ≥ x and the floor function
�x	 := the largest integers≤ x.

Remark. Considering the mantissa only, rounding results in an absolute error
bounded by |ε| ≤ 1

2β
−t. For any number x such that |x|ε[β−m−1, βM), if we

write xr = x(1 + δ), then |δ| ≤ 1
2β

1−t. This is because for all x, there exists a
unique e such that βe−1 ≤ x < βe. In [βe−1, βe), numbers are uniformly spaced

1.3. STABILITY AND CONDITIONING 5

by βe−t, it follows that |xr − x| ≤ 1
2β

e−t and hence |xr−x|
|x| ≤

1
2β

e−t

βe−1 = 1
2β

1−t.

On an IBM machine (β = 16), for example, single precision (t = 6) gives
|δ| ≤ 2−21 ≈ .477× 10−6 whereas double precision (t = 14) gives |δ| ≤ 2−53 ≈
.111× 10−15.
Remark. For each machine, there are numbers ε > 0 such that 1+ ε = 1. Such
number is called the machine precision eps.

1.3 Stability and Conditioning

The results of elementary arithmetic operations x ± y, x · y, x/y need not
belong to F (β, t,m,M), even if both operands x, y ∈ F (β, t,m,M) are machine
numbers. In fact, the floating-point operations do not necessarily satisfy the
well-known laws for arithmetic operations. It is therefore important to evaluate
the performance of different schemes even if they are mathematically equivalent.

Example. (An example of roundoff error) Suppose we have a machine with
β = 10 and t = 5. We evaluate the value e−5.5 in two different ways:

e−5.5 = 1.000− 5.5000 + 15.125− 27.730 + 38.129− 41.942
+38.446− 30.208 + . . .
= 0.00263363;

e−5.5 = 1
e5.5 = 1

1+5.5+15.125+27.730+... = 0.0040865.

It turns out the true value should be e−5.5 ≈ 0.00408677. The wrongness in
the first calculation originates from, for example, terms like 38.129 already have
roundoff effor which is nearly as large as the final result. (38.12760417)

Definition 1.3.1 A numerical method is said to be unstable if the roundoff er-
rors introduced at one stage of the computation propagate with increasing mag-
nitude in later stages.

Example. (An example of instability of certain algorithm) Suppose β = 10
and t = 6. We compute the integrals

En =

∫ 1

0

xnex−1dx, n = 1, 2, . . .

Using integration by parts, we find the recursive relationship

En = 1− nEn−1, n = 2, 3, . . . ,

where E1 = 1/e. Thus

E1 ≈ 0.367879, E6 ≈ 0.127120,

E2 ≈ 0.264242, E7 ≈ 0.110160,

E3 ≈ 0.207274, E8 ≈ 0.118720,

E4 ≈ 0.170904, E9 ≈ −0.0684800.

E5 ≈ 0.145480,

6 CHAPTER 1. ERROR ANALYSIS

Although the integrand x9ex−1 is positive through the interval (0, 1), our com-
puted value for E9 is negative.

Observe that the only roundoff error made in the above calculations was in
E1 where 1/e was rounded to six significant digits. Since the recurrence formula
is exact for real arithmetic, the error in E9 is entirely due to the rounding error
in E1. Note that the error in E1 is magnified by a factor of 2 in the calculation
of E2, then the error in E2 is magnified by 3 in computing E3, and so on. Thus,
the error in E9 is exactly the error in E1 multiplied by 9!. Suppose the initial
error is ≈ .441× 10−6. Then the error in E9 should be ≈ .1601 while the true
value of E9 is ≈ 0.0916.

Definition 1.3.2 A mathematical problem is said to be well-conditioned if small
changes in the data of a problem result in small changes in the solution.

Example. (An example of sensitivity of certain problems). Suppose β = 2, t =
30. We want to solve find zeros of the polynomial

p(x) = (x− 1)(x− 2) . . . (x− 20) = x20 − 210x19 +

The zeros of p(x) are obvious and are well separated. Upon entering a typical
coefficient into the computer, we have to round it to 30 significant base-2 dig-
its. Suppose a change in the 30-th significant base-2 digit is made only at the
coefficient of x19, i.e., suppose we are solving the polynomial

q(x) = p(x) + 2−23x19.

Then the zeros of q(x) become
1.000000000 10.095266145 ± 0.643500904i
2.000000000 11.793633881 ± 1.652329728i
3.000000000 13.992358137 ± 2.518830070i
4.000000000 16.730737466 ± 2.812624894i
4.999999928 19.502429400 ± 1.940330347i
6.000000000
6.999697234
8.007267603
8.917250249
20.846908104.

Note that the small change in the coefficient −210 by a quantity 2−23 ≈ 10−7

has caused ten of the zeros of p(x) to become complex and that two have moved
more than 2.81 units off the real axis.

We now analyze what has happened. We write

p(x, α) = x20 − αx19 + . . . = 0.

Then

∂p(x, α)

∂x

∂x

∂α
+
∂p(x, α)

∂α
= 0,

∂x

∂α
= −

∂p
∂α
∂p
∂x

=
x19∑20

i=1

∏
j �=i(x− j)

.

1.4. ANALYSIS OF ERROR PROPAGATION 7

Evaluating this at each root gives ∂x
∂α |x=i =

i19∏
20
j=1
j �=i

(i− j).

These numbers give a direct measure of the sensitivity of each of the roots to
the coefficient α. It turns out, for example, ∂x

∂α |x=18 ≈ 1.0× 109.
Remark. An ill-conditioned problem can be solved accurately, if this possible
at all, only by very careful calculation, quite aside from the method used. An
unstable numerical method for a particular (even a well-conditioned) problem
may give accurate results only in the early date, but inevitably will give useless
results in the long run.
Remark. Let f represent a true algorithm and f∗ a floating-point algorithm.
Let x represent a true input value and x∗ a floating-point input value. Then we
have

|f(x)− f∗(x∗)|
≤ |f(x)− f(x∗)|︸ ︷︷ ︸

conditioning

+ |f(x∗)− f∗(x)|︸ ︷︷ ︸
stability

+ |f∗(x)− f∗(x∗)|︸ ︷︷ ︸
truncation

.

1.4 Analysis of Error Propagation

An algorithm can briefly be described as a function y = ϕ(x). Suppose that a
function

ϕ : D ⊂ Rn → Rn

is defined on an open subset D, and that its component functions ϕi have
continuous first derivatives. Let x be an approximate value for x, and let y :=
ϕa(x). We denote the absolute errors by Δy := y − y and Δx := x− x. Then
by a Taylor series expansion and disregarding higher-order terms, we obtain

Δy ≈ Dϕ(x)Δx (1.1)

where Dϕ(x) is the Jacobian matrix

Dϕ(x) :=

⎡
⎣

∂ϕ1

∂x1
, . . . ∂ϕ1

∂xn

∂ϕm

∂x1
, . . . ∂ϕm

∂xn

⎤
⎦ .

Similarly, the relative error εyi :=
Δyi

yi
is related to εxi :=

Δxi

xi
by

εyi ≈
n∑

j=1

(
xj

ϕi(x)

∂ϕi

∂xj
)εxj (1.2)

Sometimes it is more convenient to replace (1.2) by an estimate

‖ϕ(x)− ϕ(x)‖
‖ϕ(x)‖ ≤ c

‖x− x‖
‖x‖

where c is called the condition number.
Example. For the elementary operations, we have

8 CHAPTER 1. ERROR ANALYSIS

1. εxy ≈ εx + εy.

2. εx/y ≈ εx − εy.

3. εx±y ≈ x
x±y εx ±

y
x±y εy, if x± y �= 0

4. εjx ≈ 1
2εx.

It should be noted that the multiplication, division, and square root are not
dangerous: The relative errors of the operands do not propagate strongly into
the result. If, however, two operands of different sign are to be added, then at

least one of the factors
∣∣∣ x
x+y

∣∣∣ , ∣∣∣ y
x+y

∣∣∣ is bigger than 1, and at least one of the

relative errors εx, εy will be amplified. This amplification is drastic if x ≈ −y
holds and therefore cancellation is dangerous.

Generally an algorithm ϕ comprises a sequence of elementary arithmetic
operations. Suppose this chain of computation is denoted as

x = x0 → ϕ(0)(x(0)) = x(1) → . . .→ ϕ(r)(x(r)) = x(r+1) = y.

For convenience, we define

ψ(i) := ϕ(r) ◦ ϕ(r−1) ◦ . . . ◦ ϕ(i), i = 0, 1 . . . , r.

With floating-point arithmetic, input and roundoff errors will perturb all the
intermediate exact results x(i). For the absolute errors

Δx(i) := xi − x(i),

we have

Δx(i+1) = [fl(ϕ(i)(xi))− ϕ(i)(xi)] + [ϕ(i)(xi)− ϕ(i)(x(i))].

Now by (1.1),
ϕ(i)(xi)− ϕ(i)(x(i)) ≈ Dϕ(i)(x(i))Δx(i).

On the other hand,

fl(ϕ(i)(xi)) = rd(ϕ(i)(xi)) = (I +Ei+1)ϕ
(i)(xi)

where Ei+1 := diag(δ1, . . . , δn} with |δi| ≤ δ. It is reasonable to assume that

Ei+1ϕ
(i)(xi) ≈ Ei+1ϕ

(i)(x(i))

since the error term Ei+1(ϕ
(i)(xi) − ϕ(i)(x(i))) is of higher-order error term.

Thus we find
Δx(i+1) ≈ Ei+1x

(i+1) +Dϕ(i)(x(i)Δx(i). (1.3)

The quantity αi+1 := Ei+1x
(i+1) can be interpreted as the absolute roundoff

error newly created when ϕ(i) is evaluated in floating-point arithmetic. Conse-
quently,

1.4. ANALYSIS OF ERROR PROPAGATION 9

Δx(1) ≈ Dϕ(0)(x)Δx+E1x
(1),

Δx(2) ≈ Dϕ(1)(x(1)(Dϕ(0)(x)Δx+E1x
(1)) +E2x

(2),

... (1.4)

Δy = Δx(r+1) ≈ Dϕ(r) . . . Dϕ(0)Δx+Dϕ(r) . . .Dϕ(1)E1x
(1) + . . .

= Dϕ(x)Δx+Dψ(1)(x(1))E1x
(1) + . . .+ ψ(r)(x(r))Erx

(r) +Er+1y.

The formula (1.4) describes the effect of the input error Δx and the roundoff
error αi on the result y = ϕ(x). We should note how the size of the Jacobian
matrix Dϕ(i) is critical for the effect of the intermediate roundoff errors in final
result.

