Chapter 2

Systems of Linear
Equations - Direct
Approach

One of the most important problems in scientific computation is to solve a linear
equation
Ax =B (2.1)

where A is an n X n, square matrix and z and B are n X m matrices. We are
especially interested in the case when m =1 or m =n and B = I. Needless to
say, if any method is used to solve (2.1), then in general only an approximation
T to the true solution z is obtained. The accuracy of T is usually judged by
measuring the norm of ||Z — z||. In the previous chapter, we have seen there
are many ways to define the norm of a vector. It is important to note that all
norms in finite dimensional space are equivalent in the following sense:

Theorem 2.0.1 Given any two norms || - || and || - || for a finite dimensional
vector space V, there exist constants 0 < m < M such that for allv € V, we
have

mloll < [lvfl” < Mljv].

(pf): It suffices to show the theorem if one of the norm, say || - ||’, is the || - || co-
For then there are constants 0 < m; < M; and 0 < my < Ms such that
mi||v]] < [|v]leoc < Mi|lv|| and ma||v|’||v]|ce < Mz||v]]’. Then original theorem is
proved with m = m; and M = %

We now show that given any norm I - ]I, there exist constants 0 < m < M
such that m/||v|| < ||v]jeo < M||v|| for all v € V.

Observe first that the theorem is true for any m and M if v = 0. Hence we
only need to consider v # 0. Let S := {v € V | ||v||cc = 1). Obviously this set is

bounded and closed. Since ||-|| is continuous in each of itss component (Why?), it

1



2 Systems of Linear Equations

attains its maximum vy; and minimum v, in S. Thus 0 < ||vy, || < ||v|| < |lva]|
for every v € S. Now for every 0 # v € V, we consider W € S. Thus

0 < floml| < il < flou|

[0lloolvml| < [0l < [[ofloo[lvar

It follows )

[[oar]

The theorem is proved by choosing m = m and M =
Example For A € R™*", it can be proved that

[Alls < [[Allr < v/nllAll2,
Al < 4]z < vim|| Al
F=lAll < [[All2 < vl Al

1
vl < llvllee < T—llvll-
= omll
1
Tom

Remarks (1) Based on the norm equivalent theorem, a sequence of vectors
(vn) converges in one norm if an only if it converges in any other norm.

(2) It is worth noting that || Av|| < || A||||v]| if the matrix norm || A]| is induced
from the vector norm ||v||. (See the definition of an induced norm.)

(3) For any square matrix A and for any induced norm, we always have

Al = p(A)

where p(A) := max |\;| = the spectral radius of A, and \;: = eigenvalues of A.
K]
(Prove this fact!)

2.1 Linear Systems — General Consideration

Consider the linear equation (2.1). Suppose that some y is found that satisfies

the equation
(A+E)yy=B+F (2.2)

where F and F are some “small” perturbations of A and B (One source of such
perturbations is due to the use of the floating point numbers in the computer).
We expect that y is close to x whenever E and F' are small. We now derive
some error bounds for x — y.

Assume both A~! and (A+ E)~! exist. (How do we know that this assump-
tion is reasonable?) It is clear that

r=(A+E)"YB+ Exz).
From (2.2) it follows that

r—y=(A+E) ' (Ez - F). (2.3)
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Taking any induced norm on both sides of (2.3) yields
Iz =yl < I(A+B) ALzl + | £1])- (2.4)
Since || Az| = ||B|| < || A||||l=]| implies | B]||/||A]] < ||z||, it follows that

= -y -1 LEA
< A+ E)dEN + )
[l Bl
- LEl  [LF
= A+ E) IANG + 13- (2.5)
1Al (1Bl
Obviously, the quantity ||(A + E)~!||||A| needs our special attention.
Definition 2.1.1 The number
k(A) = AT A] (2.6)

of a square matriz A is called the condition number of A with respect to the
norm chosen.

Remarks

1. Since the eigenvlaues of A~! are the reciprocals of those of A, together
with the fact || A|| > p(A), we know

k(A) >

max ||

min |A;|
2. We define k(A) = +o0o when A is singular.

3. The condition number k(A) is used to estimate the conditioning of a ma-
trix. From (2.1.4) it is seen that, if ¥ = 0, the relative error of the solution
will be large if k(A) is large.

4. A perfectly conditioned matrix A should have condition number k(A4) = 1.
(Why?).
Theorem 2.1.1 (Banach Lemma) If D is an n X n matriz with |D|| < 1, then
(I + D)~! exists and satisfies

1

I+D) Y < —r.
II( )l D]

(2.7)

(pf): By the triangle inequality, we have
(I + D)z|| = ||z + Dz|| = ||z|| — | Dz|| = (1 — [ D]})]|]]

for every z. It follows that ||(I + D)x| > 0 if z # 0. That is, (I + D)x = 0 has
only the trivial solution « = 0. This shows I + D is nonsingular. Furthermore,

1 Il =1 + D)Y(I+ D)~ = (I + D)~ + DI+ D)~

I(Z+ D)~ = 1D + D)~ = [[(Z + D)~ H|(1 = [|D}) > 0.

v



4 Systems of Linear Equations

The assertion of the theorem is proved.
With the Banach lemma, we may estimate ||(A + E)~!| as follows:

I(A+E)7H = AT+ AT B < AT+ A7 E) 7

< 1A A~
Tl [ATRE T 1= AT

(2.8)
provided ||A~L[|||E|| < 1. Together with the inequality (2.5), we can now con-
clude an a prior error estimate for the system (2.1).

Theorem 2.1.2 Suppose | E|| < m. Then

le—yll . KA)

< (
] 1— k(A) 15 1Al

el I
+ ”BH). (2.9)

Example The Hilbert matrix H,, of order n is defined by

1,1/2 o 1/n
IRRERE v 1/(n+ 1)
Un1/(n+1), ... 1/(2n—1)

This matrix can be inverted exactly and its eigenvalues can be computed exactly.
However, the Hilbert matrix is very ill-conditioned.

n | 3 | 4 | 5 | 6 | 1 | s

k(Hy) | 5.24 x 107 | 1.55 x 10* | 4.77 x 10° | 1.50 x 107 | 4.75 x 10% | 1.53 x 10™°

Therefore, such matrices are often used as test problems for testing the efficiency
of numerical methods for solving linear systems. (Ref: N. J. Higham, The test
matrix toolbox for Matlab, University of Manchester/UMIST, NA Report No.
237, ftp vtx.ma.man.ac.uk).
1,1
1,1.0001
with B = [2,2.0001]T and [2,2.0002]T, respectively. The solutions are [1,1]T
and [0,2]T. This sensitivity of solution to small changes in data is related to
the ill-conditioning of the matrix A.

We now consider a posterior error estimate. Let y denote an approximate
solution for the system (2.1). Define r := Ay — B to be a residue. Then
y —x = A~ 'r and, hence,

_ -1 -1
ly ==l _ A7l _ Al _ ECAr] o kA

Example. Consider the matrix A = } and the equation Az = B

= < = < (2.10)
] [z ] Al |l IB]
In the special case when B = I so that z = A~!, then we have
ly—A7Y
v =20 < ke, (211)

1A=
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Remark. We expect that if r is small, then y would be close to the true solution
x. However, it should be noted that even if we have two approximate solutions
y1 and y2 such that ||r1] < ||rz||, it is possible that ys is a more reasonable
solution than y;. For example, consider the system

0.780, 0.563 z1 | | 0217

0.913, 0.659 Ty | | 0.254 |°
The exact solution is [1,—1]7. Consider the two approximate solutions y; =
[0.341, —0.087]7 and y2 = [0.999, —1.001]7. Tt can be checked that r; = [—0.000010, 0.000000]"
and 72 = [—0.001343, —0.001572]7.

Remark. The information of the residue can be utilized to improve the accu-
racy of the approximate solution y. This could be done as follows: 7?77

2.2 Gaussian Elimination

Consider the system
a11x1 +a12x2 + ...+ a1y, = b1

a1221 + aoax2 + ... + asp Ty = ba.

Ap1x1 + 2o + ... + ApnTyn = by,

Gauss elimination method consists in using the first equation (assuming a1 # 0)
to eliminate all z; terms from the second equation on, then using the new second
equation to eliminate all x5 terms from the third equation on, until in the end,
we obtain a new system

a1121 + 1222 + ... + Wity = by
A22T9 + ...+ AopTyn = by

UnnTn = by

Assuming that all @;; # 0, we can solve (2.2) from the backward substitution

_ R

b= Y i Gkl ) )

x; = = ,i=n,n—1,...,1
Qg

Remark. Given a general square matrix A, suppose we can express A as
A = LU where L is a lower triangular matrix and U is an upper triangular
matrix. Then the system Az = b can be written as L(Uz) = b. We can solve
the triangular system Ly = b for y first, and then solve Uz = y for x. The
LU-decomposition of A is closely related to the Gauss elimination method.

Algorithm 2.2.1. (Gauss Elimination Method) Given A € R"*", the follow-
ing algorithm computes the factorization A = LU where L is a lower triangular
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matrix with 1 along the diagonal and U is an upper triangular matrix. The ele-
ments A;; is overwritten by 1;; if ¢ > j, and by wu;;, otherwise. If A has a singular
leading principal submatrix, then the algorithm may terminate prematurely.
Fork=1,...,n
If axr = 0 then quit.
Else
wj=ar; (J=k+1,...,n)

For i=k+1,...,n
0= Qik/akk

ajk =1
Forj=k+1,....n
aij = aij — nwj
Comments. (1) Assume aﬁ) # 0. The row multipliers are given by m;; :=
ag)/aﬁ) for i = 2,...,n. Thus from the second row on, we generate new
elements ag) = al(.l-) — mﬂag;) for i,j = 2,...,n. In general, after £ — 1 steps,

we should have constructed the matrix
ro (1) (1) (1) 17

G11 O3 cee Q1p
0 af a3,
AR — - - :
0 0 o .. oW
| 0 0 agjc) a;’;) ]
Assumine a'® S o (k) (k) C_
gay, # 0, we define the multipliers m;y, == a;;’ /a, fori=k+1,...,n.
Then we generate a%ﬁl) = al(.]-c) — mika,(;;) foralli,j =k4+1,...,n. In do so,

the earlier k£ rows are left unchanged, and zeros are introduced into column k

below the diagonal element.
(2) Observe that the operation of multiplying the i-th row by a number p and
then adding the result to the j-th row can be accomplished by premultiplying

the matrix by the elementary matrix E;;(p) where

[ 1

Eji(p) =
j-th row —— D

|

i-th column
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Thus the transformation from A® to A®) can be summarized as
Enl(—mnl) N Egl(—mgl)A(l) = A(2)
It can be checked easily that

—ma1 1

E :=Epi(—mp1) ... Ea1(—ma1) =

L —Mn1 1

In general, from A®) to A®+1)  assuming A,(!Z) # 0, we construct so called
Frobenius matrix

L1 |
1
Ej = —Mpt1,6 1
Mn,k 1
where my;, := al(.l,:)/a,(clz) fort=k+1,...,n. Then
Epn1Ep_o... BB AN = AW = U (2.12)

is an upper triangular matrix. Note each elementary matrix is nonsingular. In
fact, (E;i(p))~! = Eji(—p). Therefore

A=AW=FE*  EN U (2.13)

We note that the matrix L := E; ... E, !, is a lower triangular matrix. In
fact, it can be proved that

- 1 -
mo1 1
ma2
L= :
L Mp1  Mnp2 1 ]

Remark. The LU-decomposition as described as above can be carried out
(without pivoting) if and only if a,(ckk) #0fork=1,...,n—1.
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2.3 Mathematical Pivoting

0, 1 1
2, 2 T2
But Algorithm 2.2.1 fails to work because a;; = 0. This difficulty can easily be
remedied by simply interchanging the two equations. Such a process of inter-
changing rows or columns to bring a nonzero element to the pivoting position
is called mathematical pivoting.

Theoretically Algorithm 2.2.1 should work for the system [ ;’ é } [ il ] =
) 2

The system [ ] = [ 21 ] obviously has solutions for every [by, ba]7.
2

b . . . .
{ bl } where 0 # € << 1. But in practice we still prefer to do pivoting so as to
2

avoid division by a very small number e.
There are two types of pivoting strategies used in practice:

Definition 2.3.1 (1) For 1 <k<n-—1, let

max |a(.],z)| =

(k)|
k<i<n i rk

la
We then swap the k-th row and the r-th row of the matriz A . In case there
are more than one such indices, we choose r to be the smallest index. Such a

pivoting procedure is called Partial Pivoting.
(2) For 1 <k<n-—1, let

(B)) _ 14
peiBax oyl = lardl-
We then swap the k-th row and the r-th row, and the k-th column and the

s-th column of the matrizc A®) . Such a pivoting procedure is called Complete
Pivoting.

€1, 2e1+e, 3| [ = 1
Example. 1, 2, 0 o | =] 2 (Original system)
0, 4, 51 | z3 3
1, 2, 0] [ a= 2
€1, 2€+e€a, 3 o | =] 1 (Partial Poviting)
0, 4, 5| | =3 3
5, 4, 0 T3 3
0, 2, 1 z2 | = | 2 | (Complete Poviting)
3, 2e1+¢€, € 1 1

Remark. When compared to what might happen if no pivoting is used, Gaus-
sian elimination with complete pivoting has been shown to have slower propaga-
tion of roundoff errors. The theoretical analysis of error propagation for partial
pivoting is not as good as that for complete pivoting. But in almost all prac-
tical problems, the error behavior is essentially the same. Obviously, complete
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pivoting is more expensive. Thus, partial pivoting is used in most practical
algorithms.

The interchanging of the k-th and the r-th rows of a matrix can be achieved
from premultiplying the matrix by the permutation matrix P, where

1

«—1 k—th row
«—{r —th row

= O
O =

1

Thus the Gaussian elimination process with partial pivoting can be represented
as

En_1Py 1By ... PsE;PyEYPLA=TU (2.14)

where each Pi represents a permutation matrix P.; for some r > k and each
E; represents a Frobenius matrix. Consider the matrix

N = (Ey_1Pyr1En_o---P3EsPEyPy) 7!

(2.15)
=PE ' P, E]Y
In general, A = NU and N is not expected to be lower triangular. Let
P .= Pnfl'-'Pl. (216)
we claim
PN = L. (2.17)
That is, if we do all the necessary row permutations Py, -- -, P,_1 at the begin-

ning to get the matrix PA from A, then the matrix PA has LU-decomposition.

(pf): Since E,_1Py_1---FE1PiA = U, we have P,_; ... EyPLA = E; '\ U.
We claim P,_1E,,_5 = En_an_l for some new lower triangular matrix En—z-
More generally, we claim Py, E, = EkPkﬂ, where Ek is some new lower trian-
gular matrix for k=1,---,n—2,p> 1 and k +p < n — 1. If these claims are
true, then we have E, ' \U = P, _1E,_o---E1PlA=E, 2Py 1P, o---E1 P A.
Hence ET;IZE,;llU =P, 1P, 5E, 3---E1P;A. Continuing this process, we
eventually get LU = P,_1--- PiA where L is the product of lower triangular
matrices.

We now proceed to prove the claim that Py, ,E, = EkP;H_p. This is done



10 Systems of Linear Equations

from the following observations:

(k+p)—thr—th k—th (k+p)—th r—th
column column column column column
] ! ! ] ! I I
1 (1
Pk+pEk == 1 1
0 1
—Mk4p,k 1 0
1 0 —My k 0 1
1 L —Mnpk
kih (k+p)—th r—th
column column column
] ! ! ! ]
1
- 1
—My k 0 1
—Mk+p,k 1 0
i — Mk 1]
So
k:h (k+p)—th r—th
column column column
] ! ! ! ]
1
PispEpPryp = ) = E}.
—My Lk 1 0
—Mk4p,k 0 1
L —Mnk L]

Theorem 2.3.1 If A is nonsingular, then the Gauss elimination method with
partial pivoting to reduce A to upper triangular form can always be carried out.
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2.4  Error Analysis for Gaussian Elimination
Suppose the system
Ax =10

is be solved on the computer by the Gaussian elimination method. We usually
will only obtain an approximate solution y. We shall regard that y satisfies a
perturbed system

(A+E)yy=b+ f

for some perturbations E and f. The sources of errors are

(1) The roundoff errors in representing A and b, say

A, =A+6A,
(2.18)
b, =b+6b.
(2) The errors occurred in the decomposition of A,, say
LU, = PA, + 6A,. (2.19)

(3) The floating-point arithmetic errors in solving the triangular systems.

Since we constantly need to deal with the inner product of two vectors, we
first analyze the error in this important operation. Suppose we need to calculate

<a, b>= Eaibi (220)

by summing the products a;b; and rounding is done after each multiplication
and after each addition. Then

s1 = fl(aibr) = (a1b1)(1 + 61),
si = fl(si—1 + fl(ab;))
= (si—1 + (aibi) (1 + 6:)) (1 + m5)-
Thus
sn = fl(< a,b>)
= anbn(1 4 6,) (1 +10) + an—1bn—1(1 4 6n—1)(1 + n—1)(1 + 75)
+oo+arbi(1+61)(1+m) -+ (1 +m,) with g1 = 0.
=Y aibi(1 4 &) with 1+ € == (1+6) [T}, (1 + ).

Lemma 2.4.1. Assume |6;| < wu for 1 < i <mn, |p| <ufor 2 <i<mn,and
m = 0. (Recall u = £3'~*.) Assume u < 5. Then

le1] < 2nu,le;] < 2(n —i+2)u, for 2 <i<n. (2.21)
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(pf): Since u < 1, for all factors in (1 + 6;) H?Zl(l + 7;) are positive.
Thus
(1-uw)"<1 4e < (14u)",
(1—u)"~ 2 <146 < (1+u)" 2 for2<i<n.
It follows that
ler] <(1+u)™—1
lei] < (1 +u)""*2 -1, for2<i<n.

Consider, for p < n,

-1
(I+u)f -1 = pqup(pTu2+-~-+u”
-1 1
= pu(l—l—p w4 —uPh
p

1 1 1
< pull+5+GE)7+ 0+ (5)) < 2pu

Remark. According to the above, we may write

fl(Eazbz) = Edzbz = Eaibi

where a; = a;(1 +¢;), b; = bi(1+¢€;).
We now consider the errors involved the solving a triangular system

Tx=r.

Suppose T is a lower triangular matrix. In exact arithmetic, we should have

!
rr = T,

t11
go = 2T to121

2 = )
22
i—1

T — Ejzltijxj i

r, = —2I——* 4i=1,...,n.

tii
On a computer, we produce an approximate solution z where

ry_mn 1
tin’ tin 146
fUlri — fl(Z;-;i tijzg),  fl(ri — ST tiz) 1

i i tis ) tii 1+6;

Z1 = fl(
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where [6;] <u = £3'~". But
fUlri = FUS S tij25) = (ri — fl(zé;lltijzj)m

i—1
= (ri = 5521 (6; + 5’5@')2]')?7%

where
16t:5] < [ti;12( —j+ 1)u, for2<j<i—1,
TP |62 = 1w, for j =1.

Therefore, we find
t11(1 4 61)z1 = r1,
tii(1 4 6:) (1 +mi)zi + Z;i(tu + 0tij)z; = 1y

In summary, we find that
Lemma 2.4.2. The floating-point solution to the triangular system (2.4.9)
satisfies the system

(T+6T)z=r

where

o (5Tij, ifi?éj;
(6T)is = { La((L+6)(1+m) = 1), ifi=j.

Remark. Note that [(6T);;| < 2nult;;| for all ¢ and j. Thus the computed
solution can be interpreted as the exact solution of a slightly changed problem,
showing that the process of solving a triangular system is stable.

We now apply Lemma 2.4.2 to study the third source of errors in solving the
system (2.4). We find that the approximate solution y is given from

(L, +68L,)z = Pb, (2.22)
U, +6U)y = =z (2.23)

for some 8L, and 6U,. Putting all things together, we obtain

(Lr + 8L,)(U, + 8U,)y = Pb,,
(PA + PSA + 6A, + 8L,U, + L,8U, + 6L, 86U, 1)y Pb+ Péb,
(PA+E)y = Pb+f

where

E: = PSA+6A,.+6L.U.+ L.6U, + 6L,.6U, (2.24)
f: = Pbéb. (2.25)

We now analyze the errors in the LU-decomposition. Note that permutations
of rows do not introduce errors. We thus assume that rows of A, are already
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arranged so that A has a LU-decomposition. At step k, we are working on the

matrix
(1) (1) (1) 7

a11 a122 ce.oaq,
0 A9 a’gn
A0 . . :
(k) (k)
0 0 Qpyl e Qg
| 0 o o . af) ]

(k)

Recall that the multipliers are m;; = %, k+1 <1i < n, and that the exact
AL

arithmetic should be

a;; A<i<ki<j<m

k+1

(k+1) {ag)—mikag;), k+1<i<nk+1<j<mn;
0 otherwise.

Now due to the floating-point arithmetic, we obtain

aB o
e fl(a(k)) = Gy (1 + k)
kk kk
ag ™ = fiaf) - fitmaal)))
= (az(-k) - mlka,(c];))(l + 51‘]‘))#, fork+1<i, j<n

1+&j
where |15, [6:5], €] < u. So

AP = 0B o)

(k) (k+1)
Mgy — Mk Ay, 51] gz]

Let Ej represents the Frobenius matrix formed from the floating-point numbers

of m;,. Then we have
AFED = B A®) 4 k)

wher Q%) = (wff)) is given by

o —maay) 6i; —ali Ve for k+1<i,j<n,
E;’j)mk ,fork+1<i<n,
0 , otherwise

Thus

U, = Al — EnflA(”fl) FINOIURSY
= En—l(En_QA(n_Q) 4 Q(n—Q)) + Q(n—l)
En—l . ElA(l) + En—l e EQQ(l) + ...+ Q("—l).
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Note that in general, Ei_lﬂ(j) = QW if i < j. So we obtain
EfY BN U =AW M 4 ol

That is,
L.U.=A,+6A,

where
§A, =00 4 4D

Because of pivoting, it is reasonable to assume |m;;| < 1. Let it be assumed
that

m]aXIG | = p()l|Arlloc

where p(n) := the growth factor (which will be derived later). Then from (2.4),

we see
20(n)||Arlloou, fork+1<i,j<m;

W5 TS p)Arloon,  fork+1<i<n;
0 , otherwise .

So [[(6A )l < X2 |w(k)| In terms of matrix inequality, we denote this as

00

12 2

1 3 4 4
64 < p(m)l[Arlloc | 1 3 5

13 5 ... 212 |

or simply
164,100 < (3 (27 = 1) = 1) = Dp(n)[|Arllu < n?p(n)ul| Ar||oo-
j=1

Recall we have established that the computed solution y for the system (2.4)
actually satisfies the perturbed system (2.4). Now we have all the estimates:

[flle = [1P8b]loc = [|6b]|cc < ul[b][o,
[PéAlle = [I6A]lec < ul[Ar[os,
164 < no(null Ay o,
[Lr]ls < m,(Since [mg;[ < 1),
10le = A% D)l < np(m)l| Ay, (By definition of p(n),
I6Lrlloc < 2nu|| Ly | oo < 2n%u, (Since |(6T)i;| < 2nulty;]),
[6Urloc < 2nu|Ur|| oo < 20%p(n)ul|Ar | co-
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So the size of the perturbed matrix F is bounded by

1Bl < [ Aot +n%p + 20 + 20% + dnup)

<
< pul|Ar]loo(5n? + 4n?). (Since p >> 1, and nu < 1). (2.26)

Now we give an estimate of the growth factor p(n) used in (2.4). Recall that
kH = fl( fl(mikag;))). We claim rnax|al(.?+1)| < 2max|a§f)|. This
follows from

|al('?) o fl(mlkal(clj)” = | (k)l + |fl(mzkak])|

k
a9+ [af?)| (Since [mal?| < o)

IN

2 max |al(.;-€) |.

Thus we conclude max |a§?)| < 2=l max |al(~]1»)| and that

maxma,x|al(.l?)| < 2" M A o
kooag Y

We call p(n) = 2"~! the growth factor in the Gauss elimination. Note that this
number is overestimated.

Remarks. The growth factor p(n) can be greatly reduced for the special cases
that

(1) If A, is symmetric and positive definite, then p(n) = 1.
&

(2) If A, is an upper Hessenberg matrix, i.e., a;;” = 0 for j > i + 1, then

p(n) = n.

2.5 QR Decomposition

The technique to be discussed in this section has extremely important impact
in many areas of numerical linear algebra. We begin with the major result:

Theorem 2.5.1 Suppose A € R™*™ m > n and suppose rank (A) =n (i.e.,
suppose A has linearly independent columns). Then A can be decomposed as

A=QR

where Q = R™X™ s an orthogonal matriz (i.e., QTQ = I,,), and R € R™*™

s of the form R = [ R

0 ] where Ry € R™*™ is an upper triangular matriz.

Remark. If we rewrite Q@ = [Q1, Q2] with Q; € R™*? Qy € R»*(m—n)
Then A = QR = Q1 R;. Note also that the columns of @; are still mutually
orthonormal, i.e., QTQy = I,,.
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The proof of Theorem 2.5.1 can be seen directly from the way we construct
Q@ and R. There are two approaches for the construction:

1. QR decomposition via Gram-Schmidt process:

A set of linearly independent column vectors {v1,...,v,} C R™(m > n)
spans an n-dimensional vector subspace of R™. We want to construct an or-
thonormal set of vectors {q,...,q,} that spans the same subspace. The well-
known Gram-Schmidt process provides a recipe for accomplishing this:

(a) Set wy :=wvy.
(b) Set, in general, for j =2,...,n
j—1

< wi,v; >
wj = v; — g — 7 ;.
— < Wi, Wi >

It is really to be verified that < w;,w; >= 0 for ¢ # j, and that w; # 0. If
we define ¢; := —2—, then < ¢;,q; >= &;;. The above relationship may be

. flw;ll2?
rewritten as

U1 = Wi;

1
v = wj—l—ziwz (227)

In matrix form, (2.27) may be recorded as

[V1,. .., vn]

<wi,va> <wi,v3>
<w;,wi> <wi,w1>

<ws3,V3.

<wsz,wz>

= [wi,..,wj,...,w,] | O 0 1
0 0 0 o1
That is, V = WR. Let D := diag {ro -+ Tag ) Then V = WDD™'R =

Q1 R: where Q := WD and R; := D™ 'R.

Obviously, for our consideration, the matrix V is identified as our original
A.

2. QR decomposition via Householder transformation:

Let v € R™ be a normalized column vector. The associated Householder
matrix is defined to be

Vi=1T—2uu”.

It can be shown that V' is an orthogonal matrix (Show this!). Consider the so
called Householder transformation

Ve=x-2uuzr.

Note that Vx is the reflection of x with respect to the hyperplane which is
normal to the vector u;
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This idea, therefore, may be applied in the following way: Given x € R™,
find an Householder matrix V' such that V& = +eo where o = ||z||2 (Why?).

There are two choices of u:

Z+e
Uy =
' 12 + ez
Z_—e
us : o 1 (2.28)

12 —eill2”

Suppose the second choice is used, then Vx = [0,0,...,0]T. Applied to our
matrix A € R™*™ with m > n, then we may construct an orthogonal matrix

Vi € R™*™ such that

r, I, , L
(2) . _ 07 z,
A® = VA = 5@
0, =z, , T

Now consider the (m — 1) x (n — 1) lower right submatrix B of A, We then
can construct an orthogonal matrix V5 € R(m=1)x(m=1) gych that
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Now let V5 := { 01,"(/)2 ] € R™*™, Then
T, x, ... , T
0, =,
Vo A®) = 0, =, , T
B®)
07 07 x? 7x

[ x? x? 7x i
0, =,
0, =z .,z
AW =y, Ay VA= . | =R
0, ,0
[0, ... 0 |

Let
Q:=V"1=WV1... )1

Then @ is also an orthogonal matrix. We have proved that A = QR as asserted
in Theorem 2.5.1.
Remark. It can be proved that the QR decomposition via the Gram-Schmidt
process is not numerically stable if the columns of matrix A are nearly linearly
dependent. The Householder transformation, in contrast, can avoid the insta-
bility by carefully monitoring the choice of u (That is, use uy if z1 > 0, use us
if 1 < 0)
Algorithm 2.5.1. (QR decomposition via Householder transformation) Given
A € R™*™ with n > n, the following algorithm reduces A to upper triangu-
lar form by using Householder transformations. The strictly upper triangular
portion of A and an non-dimensional and d are overwritten by the resulting R.
The lower triangular portion of A contains the vectors u used in constructing
the Householder matrices.
Forj=1,....,n
o:=0
Fori=j3,...,n
o:=0+ a?j
Ifo=0
go to singular
Else
If aj; < 0,
s :=dj := sqrt(o) (This choice is to avoid cancellation!)
Else
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s :=d; := —sqrt(o) (The vector d stores the diagonals!)
B :=1/(saj; — o) (Note that sa;; is always negative!)
ajj 1= agj — s
For k =j+1,...,n ( Do not change the lower triangular part!)

t:=0
Fori=j,...,m
t:=t+a;ja;; (tis actually the scalar uT'z.)
t:=pt
Fori=j,...,m

Qik; = Qi + a5t
Remark. Analogous to the LU decomposition, the QR decomposition may
be used to solve the system Az = b. Indeed, if A = QR, then Rz = QTb.
The advantage is that the columns of ) has unit length while, in contrast, the
column of L in the LU decomposition may have larger length (due to the a
small pivot element). The QR decomposition usually is considered to a more
stable method, although the cost is about 4 times higher. (Justify this!)



