
Chapter 2

Systems of Linear
Equations - Direct
Approach

One of the most important problems in scientific computation is to solve a linear
equation

Ax = B (2.1)

where A is an n × n, square matrix and x and B are n ×m matrices. We are
especially interested in the case when m = 1 or m = n and B = I. Needless to
say, if any method is used to solve (2.1), then in general only an approximation
x to the true solution x is obtained. The accuracy of x is usually judged by
measuring the norm of ‖x − x‖. In the previous chapter, we have seen there
are many ways to define the norm of a vector. It is important to note that all
norms in finite dimensional space are equivalent in the following sense:

Theorem 2.0.1 Given any two norms ‖ · ‖ and ‖ · ‖′ for a finite dimensional
vector space V , there exist constants 0 < m ≤ M such that for all v ∈ V , we
have

m‖v‖ ≤ ‖v‖′ ≤M‖v‖.

(pf): It suffices to show the theorem if one of the norm, say ‖ · ‖′, is the ‖ · ‖∞.
For then there are constants 0 < m1 ≤ M1 and 0 < m2 ≤ M2 such that
m1‖v‖ ≤ ‖v‖∞ ≤M1‖v‖ and m2‖v‖′‖v‖∞ ≤M2‖v‖′. Then original theorem is
proved with m = m1

M2
and M = M1

m2
.

We now show that given any norm ‖ · ‖, there exist constants 0 < m ≤ M
such that m‖v‖ ≤ ‖v‖∞ ≤M‖v‖ for all v ∈ V .

Observe first that the theorem is true for any m and M if v = 0. Hence we
only need to consider v �= 0. Let S := {v ∈ V | ‖v‖∞ = 1). Obviously this set is
bounded and closed. Since ‖·‖ is continuous in each of itss component (Why?), it
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2 Systems of Linear Equations

attains its maximum vM and minimum vm in S. Thus 0 < ‖vm‖ ≤ ‖v‖ ≤ ‖vM‖
for every v ∈ S. Now for every 0 �= v ∈ V , we consider v

‖v‖∞
∈ S. Thus

0 ≤ ‖vm‖ ≤ ‖v‖
‖v‖∞

≤ ‖vM‖

‖v‖∞‖vm‖ ≤ ‖v‖ ≤ ‖v‖∞‖vM‖

It follows
1

‖vM‖
‖v‖ ≤ ‖v‖∞ ≤

1

‖vm‖
‖v‖.

The theorem is proved by choosing m = 1
‖vM‖ and M = 1

‖vm‖ .

Example For A ∈ Rm×n, it can be proved that

‖A‖2 ≤ ‖A‖F ≤
√
n‖A‖2,

1√
n
‖A‖∞ ≤ ‖A‖2 ≤

√
m‖A‖∞,

1√
m
‖A‖1 ≤ ‖A‖2 ≤

√
n‖A‖1.

Remarks (1) Based on the norm equivalent theorem, a sequence of vectors
(vn) converges in one norm if an only if it converges in any other norm.

(2) It is worth noting that ‖Av‖ ≤ ‖A‖‖v‖ if the matrix norm ‖A‖ is induced
from the vector norm ‖v‖. (See the definition of an induced norm.)

(3) For any square matrix A and for any induced norm, we always have

‖A‖ ≥ ρ(A)

where ρ(A) := max
i
|λi| = the spectral radius of A, and λi: = eigenvalues of A.

(Prove this fact!)

2.1 Linear Systems – General Consideration

Consider the linear equation (2.1). Suppose that some y is found that satisfies
the equation

(A+E)y = B + F (2.2)

where E and F are some “small” perturbations of A and B (One source of such
perturbations is due to the use of the floating point numbers in the computer).
We expect that y is close to x whenever E and F are small. We now derive
some error bounds for x− y.

Assume both A−1 and (A+E)−1 exist. (How do we know that this assump-
tion is reasonable?) It is clear that

x = (A+E)−1(B +Ex).

From (2.2) it follows that

x− y = (A+E)−1(Ex− F ). (2.3)
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Taking any induced norm on both sides of (2.3) yields

‖x− y‖ ≤ ‖(A+E)−1‖(‖E‖‖x‖+ ‖F‖). (2.4)

Since ‖Ax‖ = ‖B‖ ≤ ‖A‖‖x‖ implies ‖B‖/‖A‖ ≤ ‖x‖, it follows that

‖x− y‖
‖x‖ ≤ ‖(A+E)−1‖(‖E‖+ ‖F‖ ‖A‖‖B‖ )

= ‖(A+E)−1‖‖A‖(‖E‖‖A‖ +
‖F‖
‖B‖). (2.5)

Obviously, the quantity ‖(A+E)−1‖‖A‖ needs our special attention.

Definition 2.1.1 The number

k(A) := ‖A−1‖‖A‖ (2.6)

of a square matrix A is called the condition number of A with respect to the
norm chosen.

Remarks

1. Since the eigenvlaues of A−1 are the reciprocals of those of A, together
with the fact ‖A‖ ≥ ρ(A), we know

k(A) ≥ max |λi|
min |λi|

.

2. We define k(A) = +∞ when A is singular.

3. The condition number k(A) is used to estimate the conditioning of a ma-
trix. From (2.1.4) it is seen that, if E = 0, the relative error of the solution
will be large if k(A) is large.

4. A perfectly conditioned matrix A should have condition number k(A) = 1.
(Why?).

Theorem 2.1.1 (Banach Lemma) If D is an n×n matrix with ‖D‖ < 1, then
(I +D)−1 exists and satisfies

‖(I +D)−1‖ ≤ 1

1− ‖D‖ . (2.7)

(pf): By the triangle inequality, we have

‖(I +D)x‖ = ‖x+Dx‖ ≥ ‖x‖ − ‖Dx‖ ≥ (1− ‖D‖)‖x‖

for every x. It follows that ‖(I +D)x‖ > 0 if x �= 0. That is, (I +D)x = 0 has
only the trivial solution x = 0. This shows I +D is nonsingular. Furthermore,

1 = ‖I‖ = ‖(I +D)(I +D)−1‖ = ‖(I +D)−1 +D(I +D)−1‖
≥ ‖(I +D)−1‖ − ‖D‖‖(I +D)−1‖ = ‖(I +D)−1‖(1− ‖D‖) > 0.
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The assertion of the theorem is proved.
With the Banach lemma, we may estimate ‖(A+E)−1‖ as follows:

‖(A+E)−1‖ = ‖[A(I +A−1E)]−1‖ ≤ ‖A−1‖‖(I +A−1E)−1‖

≤ ‖A−1‖
1− ‖A−1E‖ ≤

‖A−1‖
1− ‖A−1‖‖E‖ (2.8)

provided ‖A−1‖‖E‖ < 1. Together with the inequality (2.5), we can now con-
clude an a prior error estimate for the system (2.1).

Theorem 2.1.2 Suppose ‖E‖ < 1
‖A−1‖ . Then

‖x− y‖
‖x‖ ≤ k(A)

1− k(A)‖E‖
‖A‖

(
‖E‖
‖A‖ +

‖F‖
‖B‖). (2.9)

Example The Hilbert matrix Hn of order n is defined by

Hn :=

⎡
⎢⎢⎢⎣

1, 1/2 , . . . , 1/n
1/2, 1/3 , . . . , 1/(n+ 1)
...
1/n, 1/(n+ 1), . . . 1/(2n− 1)

⎤
⎥⎥⎥⎦ .

This matrix can be inverted exactly and its eigenvalues can be computed exactly.
However, the Hilbert matrix is very ill-conditioned.

n 3 4 5 6 7 8
k(Hn) 5.24× 102 1.55× 104 4.77× 105 1.50× 107 4.75× 108 1.53× 1010

Therefore, such matrices are often used as test problems for testing the efficiency
of numerical methods for solving linear systems. (Ref: N. J. Higham, The test
matrix toolbox for Matlab, University of Manchester/UMIST, NA Report No.
237, ftp vtx.ma.man.ac.uk).

Example. Consider the matrix A =

[
1, 1
1, 1.0001

]
and the equation Ax = B

with B = [2, 2.0001]T and [2, 2.0002]T , respectively. The solutions are [1, 1]T

and [0, 2]T . This sensitivity of solution to small changes in data is related to
the ill-conditioning of the matrix A.

We now consider a posterior error estimate. Let y denote an approximate
solution for the system (2.1). Define r := Ay − B to be a residue. Then
y − x = A−1r and, hence,

‖y − x‖
‖x‖ =

‖A−1r‖
‖x‖ ≤ ‖A

−1‖‖r‖
‖x‖ =

k(A)‖r‖
‖A‖‖x‖ ≤

k(A)‖r‖
‖B‖ . (2.10)

In the special case when B = I so that x = A−1, then we have

‖y −A−1‖
‖A−1‖ ≤ k(A)‖r‖. (2.11)
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Remark. We expect that if r is small, then y would be close to the true solution
x. However, it should be noted that even if we have two approximate solutions
y1 and y2 such that ‖r1‖ < ‖r2‖, it is possible that y2 is a more reasonable
solution than y1. For example, consider the system[

0.780, 0.563
0.913, 0.659

] [
x1

x2

]
=

[
0.217
0.254

]
.

The exact solution is [1,−1]T . Consider the two approximate solutions y1 =
[0.341,−0.087]T and y2 = [0.999,−1.001]T . It can be checked that r1 = [−0.000010, 0.000000]T
and r2 = [−0.001343,−0.001572]T.
Remark. The information of the residue can be utilized to improve the accu-
racy of the approximate solution y. This could be done as follows:???

2.2 Gaussian Elimination

Consider the system

a11x1 + a12x2 + . . .+ a1nxn = b1

a12x1 + a22x2 + . . .+ a2nxn = b2.

...

an1x1 + an2x2 + . . .+ annxn = bn

Gauss elimination method consists in using the first equation (assuming a11 �= 0)
to eliminate all x1 terms from the second equation on, then using the new second
equation to eliminate all x2 terms from the third equation on, until in the end,
we obtain a new system

a11x1 + a12x2 + . . .+ a1nxn = b1
a22x2 + . . .+ a2nxn = b2

annxn = bn

Assuming that all aii �= 0, we can solve (2.2) from the backward substitution

xi =
bi −

∑n
k=i+1 aikxk

aii
, i = n, n− 1, . . . , 1.

Remark. Given a general square matrix A, suppose we can express A as
A = LU where L is a lower triangular matrix and U is an upper triangular
matrix. Then the system Ax = b can be written as L(Ux) = b. We can solve
the triangular system Ly = b for y first, and then solve Ux = y for x. The
LU -decomposition of A is closely related to the Gauss elimination method.
Algorithm 2.2.1. (Gauss Elimination Method) Given A ∈ Rn×n, the follow-
ing algorithm computes the factorization A = LU where L is a lower triangular
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matrix with 1 along the diagonal and U is an upper triangular matrix. The ele-
ments Aij is overwritten by 1ij if i > j, and by uij , otherwise. If A has a singular
leading principal submatrix, then the algorithm may terminate prematurely.

For k = 1, . . . , n
If akk = 0 then quit.
Else

wj := akj (j = k + 1, . . . , n)

For i = k + 1, . . . , n

η := aik/akk

aik := η
For j = k + 1, . . . , n

aij := aij − ηwj

Comments. (1) Assume a
(1)
11 �= 0. The row multipliers are given by mi1 :=

a
(1)
i1 /a

(1)
11 for i = 2, . . . , n. Thus from the second row on, we generate new

elements a
(2)
ij := a

(1)
ij −mi1a

(1)
1j for i, j = 2, . . . , n. In general, after k − 1 steps,

we should have constructed the matrix

A(k) :=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

a
(1)
11 a

(1)
12 . . . a

(1)
1n

0 a
(2)
22 a22n
. . .

. . .
...

0 0 a
(k)
kk . . . a

(k)
kn

...

0 0 a
(k)
nk . . . a

(k)
nn

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Assuming a
(k)
kk �= 0, we define the multipliersmik := a

(k)
ik /a

(k)
kk for i = k+1, . . . , n.

Then we generate a
(k+1)
ij := a

(k)
ij −mika

(k)
kj for all i, j = k + 1, . . . , n. In do so,

the earlier k rows are left unchanged, and zeros are introduced into column k
below the diagonal element.

(2) Observe that the operation of multiplying the i-th row by a number p and
then adding the result to the j-th row can be accomplished by premultiplying
the matrix by the elementary matrix Eji(p) where

j-th row −→
Eji(p) :=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
. . .

. . .

p
. . .

0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

↑
i-th column
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Thus the transformation from A(1) to A(2) can be summarized as

En1(−mn1) . . . E21(−m21)A
(1) = A(2).

It can be checked easily that

E1 := En1(−mn1) . . . E21(−m21) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
−m21 1

...

...
−mn1 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

In general, from A(k) to A(k+1), assuming A
(k)
kk �= 0, we construct so called

Frobenius matrix

Ek :=

⎡
⎢⎢⎢⎢⎢⎣

Ik−1

1
−mk+1,k 1

...
. . .

−mn,k 1

⎤
⎥⎥⎥⎥⎥⎦

where mik := a
(k)
ik /a

(k)
kk for i = k + 1, . . . , n. Then

En−1En−2 . . . E2E1A
(1) = A(n) := U (2.12)

is an upper triangular matrix. Note each elementary matrix is nonsingular. In
fact, (Eji(p))

−1 = Eji(−p). Therefore

A = A(1) = E−1
1 . . . E−1

n−1U. (2.13)

We note that the matrix L := E−1
1 . . . E−1

n−1 is a lower triangular matrix. In
fact, it can be proved that

L =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
m21 1

m22

...
...

mn1 mn2 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Remark. The LU -decomposition as described as above can be carried out

(without pivoting) if and only if a
(k)
kk �= 0 for k = 1, . . . , n− 1.
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2.3 Mathematical Pivoting

The system

[
0, 1
2, 2

][
x1

x2

]
=

[
b1
b2

]
obviously has solutions for every [b1, b2]

T .

But Algorithm 2.2.1 fails to work because a11 = 0. This difficulty can easily be
remedied by simply interchanging the two equations. Such a process of inter-
changing rows or columns to bring a nonzero element to the pivoting position
is called mathematical pivoting.

Theoretically Algorithm 2.2.1 should work for the system

[
ε, 1
2, 0

][
x1

x2

]
=[

b1
b2

]
where 0 �= ε << 1. But in practice we still prefer to do pivoting so as to

avoid division by a very small number ε.
There are two types of pivoting strategies used in practice:

Definition 2.3.1 (1) For 1 ≤ k ≤ n− 1, let

max
k≤i≤n

|a(k)ik | = |a
(k)
rk |.

We then swap the k-th row and the r-th row of the matrix A(k). In case there
are more than one such indices, we choose r to be the smallest index. Such a
pivoting procedure is called Partial Pivoting.

(2) For 1 ≤ k ≤ n− 1, let

max
k≤i≤nk≤j≤n

|a(k)ij | = |a(k)rs |.

We then swap the k-th row and the r-th row, and the k-th column and the
s-th column of the matrix A(k). Such a pivoting procedure is called Complete
Pivoting.

Example.

⎡
⎣ ε1, 2ε1 + ε2, 3

1, 2, 0
0, 4, 5

⎤
⎦
⎡
⎣ x1

x2

x3

⎤
⎦ =

⎡
⎣ 1

2
3

⎤
⎦ (Original system)

⎡
⎣ 1, 2, 0

ε1, 2ε1 + ε2, 3
0, 4, 5

⎤
⎦
⎡
⎣ x1

x2

x3

⎤
⎦ =

⎡
⎣ 2

1
3

⎤
⎦ (Partial Poviting)

⎡
⎣ 5, 4, 0

0, 2, 1
3, 2ε1 + ε2, ε1

⎤
⎦
⎡
⎣ x3

x2

x1

⎤
⎦ =

⎡
⎣ 3

2
1

⎤
⎦ (Complete Poviting)

Remark. When compared to what might happen if no pivoting is used, Gaus-
sian elimination with complete pivoting has been shown to have slower propaga-
tion of roundoff errors. The theoretical analysis of error propagation for partial
pivoting is not as good as that for complete pivoting. But in almost all prac-
tical problems, the error behavior is essentially the same. Obviously, complete
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pivoting is more expensive. Thus, partial pivoting is used in most practical
algorithms.

The interchanging of the k-th and the r-th rows of a matrix can be achieved
from premultiplying the matrix by the permutation matrix Prk where

Prk =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
. . .

1
0 1
1 0

1
. . .

1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

←− k − th row
←− r − th row

Thus the Gaussian elimination process with partial pivoting can be represented
as

En−1Pn−1En−2 . . . P3E2P2E1P1A = U (2.14)

where each Pk represents a permutation matrix Prk for some r ≥ k and each
Ek represents a Frobenius matrix. Consider the matrix

N := (En−1Pn−1En−2 · · ·P3E2P2E1P1)
−1

= P1E
−1
1 · · ·Pn−1E

−1
n−1

(2.15)

In general, A = NU and N is not expected to be lower triangular. Let

P := Pn−1 · · ·P1. (2.16)

we claim

PN = L. (2.17)

That is, if we do all the necessary row permutations P1, · · · , Pn−1 at the begin-
ning to get the matrix PA from A, then the matrix PA has LU -decomposition.

(pf): Since En−1Pn−1 · · ·E1P1A = U , we have Pn−1 . . . E1P1A = E−1
n−1U .

We claim Pn−1En−2 = Ên−2Pn−1 for some new lower triangular matrix Ên−2.
More generally, we claim Pk+pEk = ÊkPk+p where Êk is some new lower trian-
gular matrix for k = 1, · · · , n − 2, p ≥ 1 and k + p ≤ n− 1. If these claims are
true, then we have E−1

n−1U = Pn−1En−2 · · ·E1P1A = Ên−2Pn−1Pn−2 · · ·E1P1A.

Hence Ê−1
n−2E

−1
n−1U = Pn−1Pn−2En−3 · · ·E1P1A. Continuing this process, we

eventually get LU = Pn−1 · · ·P1A where L is the product of lower triangular
matrices.

We now proceed to prove the claim that Pk+pEk = ÊkPk+p. This is done
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from the following observations:

Pk+pEk =

(k + p)− th r − th
column column
↓ ↓

k − th (k + p)− th r − th
column column column
↓ ↓ ↓⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
. . .

1
0 1

1 0
. . .

1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
. . .

1
−mk+p,k 1 0
−mr,k 0 1

. . .

−mn,k

=

kth (k + p)− th r − th
column column column
↓ ↓ ↓⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
. . .

1
−mr,k 0 1
−mk+p,k 1 0

. . .

−mn,k 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

So

Pk+pEkPk+p =

kth (k + p)− th r − th
column column column
↓ ↓ ↓⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
. . .

1
−mr,k 1 0
−mk+p,k 0 1

. . .

−mn,k 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

= Êk.

Theorem 2.3.1 If A is nonsingular, then the Gauss elimination method with
partial pivoting to reduce A to upper triangular form can always be carried out.
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2.4 Error Analysis for Gaussian Elimination

Suppose the system
Ax = b

is be solved on the computer by the Gaussian elimination method. We usually
will only obtain an approximate solution y. We shall regard that y satisfies a
perturbed system

(A+E)y = b+ f

for some perturbations E and f . The sources of errors are

(1) The roundoff errors in representing A and b, say

Ar = A+ δA,

br = b+ δb.
(2.18)

(2) The errors occurred in the decomposition of Ar, say

LrUr = PAr + δAr. (2.19)

(3) The floating-point arithmetic errors in solving the triangular systems.

Since we constantly need to deal with the inner product of two vectors, we
first analyze the error in this important operation. Suppose we need to calculate

< a, b >= Σaibi (2.20)

by summing the products aibi and rounding is done after each multiplication
and after each addition. Then

s1 = fl(a1b1) = (a1b1)(1 + δ1),

si = fl(si−1 + fl(aibi))

= (si−1 + (aibi)(1 + δi))(1 + ηi).

Thus

sn = fl(< a, b >)

= anbn(1 + δn)(1 + ηn) + an−1bn−1(1 + δn−1)(1 + ηn−1)(1 + ηn)

+ · · ·+ a1b1(1 + δ1)(1 + η1) · · · (1 + ηn) with η1 = 0.

=
∑n

i=1 aibi(1 + εi) with 1 + εi := (1 + δi)
∏n

j=i(1 + ηj).

Lemma 2.4.1. Assume |δi| ≤ u for 1 ≤ i ≤ n, |ηi| ≤ u for 2 ≤ i ≤ n, and
η1 = 0. (Recall u = 1

2β
1−t.) Assume u < 1

2n . Then

|ε1| ≤ 2nu, |εi| ≤ 2(n− i+ 2)u, for 2 ≤ i ≤ n. (2.21)
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(pf): Since u < 1, for all factors in (1 + δi)
∏n

j=1(1 + ηi) are positive.

Thus

(1− u)n ≤ 1 +ε1 ≤ (1 + u)n,

(1− u)n−i+2 ≤ 1 + εi ≤ (1 + u)n−i+2, for 2 ≤ i ≤ n.

It follows that

|ε1| ≤ (1 + u)n − 1

|εi| ≤ (1 + u)n−i+2 − 1, for 2 ≤ i ≤ n.

Consider, for p ≤ n,

(1 + u)p − 1 = pu+
p(p− 1

2
u2 + · · ·+ up

= pu(1 +
p− 1

2
u+ · · ·+ 1

p
up−1)

≤ pu(1 +
1

2
+ (

1

2
)2 + · · ·+ (

1

2
)p) ≤ 2pu.

Remark. According to the above, we may write

fl(Σaibi) = Σãibi = Σaib̃i

where ãi = ai(1 + εi), b̃i = bi(1 + εi).

We now consider the errors involved the solving a triangular system

Tx = r.

Suppose T is a lower triangular matrix. In exact arithmetic, we should have

x1 =
r1
t11

,

x2 =
r2 − t21x1

t22
,

...

xi =
ri − Σi−1

j=1tijxj

tii
, i = 1, . . . , n.

On a computer, we produce an approximate solution z where

z1 = fl(
r1
t11

) =
r1
t11

1

1 + δ1
,

zi = fl(
fl(ri − fl(

∑i−1
j=1 tijzj)

tii
) =

fl(ri − fl(Σi−1
j=1tijzj)

tii

1

1 + δi
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where |δi| ≤ u = 1
2β

1−t. But

fl(ri − fl(Σi−1
j=1tijzj) = (ri − fl(Σi−1

j=1tijzj)
1

1 + ηi

= (ri − Σi−1
j=1(tij + δtij)zj)

1

1 + ηi

where

|δtij | ≤
{
|tij |2(i− j + 1)u, for 2 ≤ j ≤ i− 1,
|ti1|2(i− 1)u, for j = 1.

Therefore, we find

t11(1 + δ1)z1 = r1,

tii(1 + δi)(1 + ηi)zi +
∑i=1

j=1(tij + δtij)zj = ri.

In summary, we find that
Lemma 2.4.2. The floating-point solution to the triangular system (2.4.9)
satisfies the system

(T + δT )z = r

where

(δT )ij =

{
δTij , if i �= j;
tii((1 + δi)(1 + ηi)− 1), if i = j.

Remark. Note that |(δT )ij | ≤ 2nu|tij | for all i and j. Thus the computed
solution can be interpreted as the exact solution of a slightly changed problem,
showing that the process of solving a triangular system is stable.

We now apply Lemma 2.4.2 to study the third source of errors in solving the
system (2.4). We find that the approximate solution y is given from

(Lr + δLr)z = Pbr (2.22)

(Ur + δUr)y = z (2.23)

for some δLr and δUr. Putting all things together, we obtain

(Lr + δLr)(Ur + δUr)y = Pbr,

(PA+ PδA+ δAr + δLrUr + LrδUr + δLrδU+r)y = Pb+ Pδb,

(PA+E)y = Pb+ f

where

E : = PδA+ δAr + δLrUr + LrδUr + δLrδUr (2.24)

f : = Pδb. (2.25)

We now analyze the errors in the LU -decomposition. Note that permutations
of rows do not introduce errors. We thus assume that rows of Ar are already
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arranged so that A has a LU -decomposition. At step k, we are working on the
matrix

A(k) :=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

a
(1)
11 a

(1)
12 . . . a

(1)
1n

0 a
(2)
22 a22n
. . .

. . .
...

0 0 a
(k)
kk . . . a

(k)
kn

...

0 0 a
(k)
nk . . . a

(k)
nn

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Recall that the multipliers are mik =
a
(k)

ik

a
(k)
kk

, k + 1 ≤ i ≤ n, and that the exact

arithmetic should be

a
(k+1)
ij =

{ a
(k)
ij , 1 ≤ i ≤ k, i ≤ j ≤ n;

a
(k)
ij −mika

(k)
kj , k + 1 ≤ i ≤ n, k + 1 ≤ j ≤ n;

0 otherwise.

Now due to the floating-point arithmetic, we obtain

mik = fl(
a
(k)
ik

a
(k)
kk

) =
a
(k)
ik

a
(k)
kk

(1 + ηik)

a
(k+1)
ij = fl(a

(k)
ij − fl(mika

(k)
kj ))

= (a
(k)
ij −mika

(k)
kj )(1 + δij))

1

1 + ξij
, for k + 1 ≤ i, j ≤ n

where |ηij |, |δij |, |ξij | ≤ u. So

A
(k+1)
ij = a

(k)
ij −mika

(k)
kj −mika

(k)
kj δij − a

(k+1)
ij ξij .

Let Ek represents the Frobenius matrix formed from the floating-point numbers
of mik. Then we have

A(k+1) = EkA
(k) +Ω(k)

wher Ω(k) = (ω
(k)
ij ) is given by

ω
(k)
ij =

{ −mika
(k)
kj δij − a

(k+1)
ij ξij , for k + 1 ≤ i, j ≤ n,

a
(k)
ik ηik , for k + 1 ≤ i ≤ n,

0 , otherwise

Thus

Ur = A(n) = En−1A
(n−1) +Ω(n−1)

= En−1(En−2A
(n−2) +Ω(n−2)) + Ω(n−1)

= En−1 . . . E1A
(1) + En−1 . . . E2Ω

(1) + . . .+Ω(n−1).
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Note that in general, E−1
i Ω(j) = Ω(j), if i ≤ j. So we obtain

E−1
1 . . . E−1

n−1Ur = A(1) +Ω(1) + . . .+Ω(n−1)

That is,

LrUr = Ar + δAr

where

δAr = Ω(1) + . . .+Ω(n−1)

Because of pivoting, it is reasonable to assume |mij | ≤ 1. Let it be assumed
that

max
i,j,k
|a(k)ij | = ρ(n)‖Ar‖∞

where ρ(n) := the growth factor (which will be derived later). Then from (2.4),
we see

|ω(k)
ij | ≤

2ρ(n)‖Ar‖∞u, for k + 1 ≤ i, j ≤ n;

ρ(n)‖Ar‖∞u, for k + 1 ≤ i ≤ n;
0 , otherwise .

So ‖(δAr)ij‖ ≤ Σn−1
k=1 |ω

(k)
ij |. In terms of matrix inequality, we denote this as

|δAr | ≤ ρ(n)‖Ar‖∞u

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0 0
1 2 . . . 2
1 3 4 . . . 4
1 3 5
...

...
...

1 3 5 . . . 2n− 2

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

or simply

‖δAr‖∞ ≤ (
n∑

j=1

(2j − 1)− 1)− 1)ρ(n)‖Ar‖u ≤ n2ρ(n)u‖Ar‖∞.

Recall we have established that the computed solution y for the system (2.4)
actually satisfies the perturbed system (2.4). Now we have all the estimates:

‖f‖∞ = ‖Pδb‖∞ = ‖δb‖∞ ≤ u‖b‖∞,

‖PδA‖∞ = ‖δA‖∞ ≤ u‖Ar‖∞,

‖δAr‖∞ ≤ n2ρ(n)u‖Ar‖∞,

‖Lr‖∞ ≤ n, (Since |mij | ≤ 1),

‖Ur‖∞ = ‖A(n−1)‖∞ ≤ nρ(n)‖Ar‖∞, (By definition of ρ(n)),

‖δLr‖∞ ≤ 2nu‖Lr‖∞ ≤ 2n2u, (Since |(δT )ij | ≤ 2nu|tij|),
‖δUr‖∞ ≤ 2nu‖Ur‖∞ ≤ 2n2ρ(n)u‖Ar‖∞.
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So the size of the perturbed matrix E is bounded by

‖E‖ ≤ ‖Ar‖∞(1 + n2ρ+ 2n3ρ+ 2n3ρ+ 4n4uρ)

≤ ρu‖Ar‖∞(5n2 + 4n3). (Since ρ >> 1, and n2u < 1). (2.26)

Now we give an estimate of the growth factor ρ(n) used in (2.4). Recall that

a
(k+1)
ij = fl(a

(k)
ij − fl(mika

(k)
kj )). We claim max |a(k+1)

ij | ≤ 2max |a(k)ij |. This
follows from

|a(k)ij − fl(mika
(k)
kj )| ≤ |a

(k)
ij |+ |fl(mika

(k)
kj |

≤ |a(k)ij |+ |a
(k)
kj | (Since |mika

(k)
kj | ≤ |a

(k)
kj |)

≤ 2max |a(k)ij |.

Thus we conclude max |a(k)ij | ≤ 2k−1 max |a(1)ij | and that

max
k

max
i,j
|a(k)ij | ≤ 2n−1‖Ar‖∞.

We call ρ(n) = 2n−1 the growth factor in the Gauss elimination. Note that this
number is overestimated.
Remarks. The growth factor ρ(n) can be greatly reduced for the special cases
that

(1) If Ar is symmetric and positive definite, then ρ(n) = 1.

(2) If Ar is an upper Hessenberg matrix, i.e., a
(1)
ij = 0 for j > i + 1, then

ρ(n) = n.

2.5 QR Decomposition

The technique to be discussed in this section has extremely important impact
in many areas of numerical linear algebra. We begin with the major result:

Theorem 2.5.1 Suppose A ∈ Rm×n, m ≥ n and suppose rank (A) = n (i.e.,
suppose A has linearly independent columns). Then A can be decomposed as

A = QR

where Q = Rm×m is an orthogonal matrix (i.e., QTQ = Im), and R ∈ Rm×m

is of the form R =

[
R1

0

]
where R1 ∈ Rn×n is an upper triangular matrix.

Remark. If we rewrite Q = [Q1, Q2] with Q1 ∈ Rm×n,Q2 ∈ Rn×(m−n).
Then A = QR = Q1R1. Note also that the columns of Q1 are still mutually
orthonormal, i.e., QT

1 Q1 = In.
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The proof of Theorem 2.5.1 can be seen directly from the way we construct
Q and R. There are two approaches for the construction:

1. QR decomposition via Gram-Schmidt process:
A set of linearly independent column vectors {v1, . . . , vn} ⊂ Rm(m ≥ n)

spans an n-dimensional vector subspace of Rm. We want to construct an or-
thonormal set of vectors {q1, . . . , qn} that spans the same subspace. The well-
known Gram-Schmidt process provides a recipe for accomplishing this:

(a) Set w1 := v1.

(b) Set, in general, for j = 2, . . . , n

wj := vj −
j−1∑
i=1

< wi, vj >

< wi, wi >
wi.

It is really to be verified that < wi, wj >= 0 for i �= j, and that wj �= 0. If
we define qj :=

wj

‖wj‖2
, then < qi, qj >= δij . The above relationship may be

rewritten as

v1 = w1;

vj = wj +

j−1∑
i=1

< wi, vj >

< wi, wi >
wi. (2.27)

In matrix form, (2.27) may be recorded as

[v1, . . . , vn]

= [w1, . . . , wj , . . . , wn]

⎡
⎢⎢⎢⎢⎢⎣

1 <w1,v2>
<wi,w1>

<w1,v3>
<w1,w1>

0 1 <w2,v3.
<w2,w2>

0 0 1
...

...
. . .

0 0 0 . . . 1

⎤
⎥⎥⎥⎥⎥⎦ .

That is, V = WR̃. Let D := diag { 1
‖w1‖ , . . . ,

1
‖wn‖}. Then V = WDD−1R̃ =

Q1R1 where Q1 := WD and R1 := D−1R̃.
Obviously, for our consideration, the matrix V is identified as our original

A.
2. QR decomposition via Householder transformation:
Let u ∈ Rm be a normalized column vector. The associated Householder

matrix is defined to be
V := I − 2uuT .

It can be shown that V is an orthogonal matrix (Show this!). Consider the so
called Householder transformation

V x = x− 2uuTx.

Note that V x is the reflection of x with respect to the hyperplane which is
normal to the vector u;
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This idea, therefore, may be applied in the following way: Given x ∈ Rm,
find an Householder matrix V such that V x = ±eσ where σ = ‖x‖2 (Why?).

There are two choices of u:

u1 : =
x
σ + e1

‖ xσ + e1‖2
,

u2 : =
x
σ − e1

‖ xσ − e1‖2
. (2.28)

Suppose the second choice is used, then V x = [σ, 0, . . . , 0]T . Applied to our
matrix A ∈ Rm×n with m ≥ n, then we may construct an orthogonal matrix
V1 ∈ Rm×n such that

A(2) := V1A =

⎡
⎢⎢⎣

x, x, . . . , x
0, x,

B(2)

0, x, , x

⎤
⎥⎥⎦ .

Now consider the (m− 1)× (n− 1) lower right submatrix B(2) of A(2). We then
can construct an orthogonal matrix V2 ∈ R(m−1)×(m−1) such that

V ′
2B

(2) =

⎡
⎢⎢⎢⎢⎣

x, x, . . . , x
0, x,

0, x, , x

⎤
⎥⎥⎥⎥⎦ .
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Now let V2 :=

[
1, 0
0, V2

]
∈ Rm×n. Then

V2A
(2) =

⎡
⎢⎢⎢⎢⎣

x, x, . . . , x
0, x,

0, x, , x
B(3)

0, 0, x, , x

⎤
⎥⎥⎥⎥⎦ .

Continuing this procedure n− 1 times, we obtain

A(n) := Vn−1A
(n−1) − Vn−1 . . . V1A =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x, x, . . . , x
0, x,

0, x, , x

, x
0, , 0

0, . . . , 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
= R.

Let

Q := V −1 := (Vn−1 . . . V1)
−1.

Then Q is also an orthogonal matrix. We have proved that A = QR as asserted
in Theorem 2.5.1.
Remark. It can be proved that the QR decomposition via the Gram-Schmidt
process is not numerically stable if the columns of matrix A are nearly linearly
dependent. The Householder transformation, in contrast, can avoid the insta-
bility by carefully monitoring the choice of u (That is, use u1 if x1 > 0, use u2

if x1 < 0).
Algorithm 2.5.1. (QR decomposition via Householder transformation) Given
A ∈ Rm×n with n ≥ n, the following algorithm reduces A to upper triangu-
lar form by using Householder transformations. The strictly upper triangular
portion of A and an non-dimensional and d are overwritten by the resulting R.
The lower triangular portion of A contains the vectors u used in constructing
the Householder matrices.

For j = 1, . . . , n
σ := 0

For i = j, . . . , n
σ := σ + a2ij

If σ = 0
go to singular

Else
If ajj < 0,

s := dj := sqrt(σ) (This choice is to avoid cancellation!)
Else
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s := dj := −sqrt(σ) (The vector d stores the diagonals!)
β := 1/(sajj − σ) (Note that sajj is always negative!)
ajj := ajj − s
For k = j + 1, . . . , n ( Do not change the lower triangular part!)

t := 0
For i = j, . . . ,m

t := t+ aijaik ( t is actually the scalar uTx.)
t := βt
For i = j, . . . ,m

aik; = aik + aijt
Remark. Analogous to the LU decomposition, the QR decomposition may
be used to solve the system Ax = b. Indeed, if A = QR, then Rx = QT b.
The advantage is that the columns of Q has unit length while, in contrast, the
column of L in the LU decomposition may have larger length (due to the a
small pivot element). The QR decomposition usually is considered to a more
stable method, although the cost is about 4 times higher. (Justify this!)


