
Chapter 4

Least Squares Problems

Data fitting (or parameter estimation) is an important technique used for
modeling in many areas of disciplines. The problem can be described as follows:
Assuming a physical phenomenon is modeled by a relationship

y = f(z;x1, . . . , xn) (4.1)

where f is a prescribed function determined up to values of x1, . . . , xn, z is
the control variable and y is the expected response to z. After m experiments
(m ≥ n), we have collected m observed quantities (zi, yi), i = 1, . . . ,m Due to
measurement errors (called noise), however, (zi, yi) may not satisfy (4.1) exactly.
We, therefore, seek to adjust the parameters x1, . . . , xn so that the expression

g(x1, . . . , xn) :=
m∑
i=1

‖yi − f(zi;x1, . . . , xn)‖2F (4.2)

is minimized.

As a necessary condition that (x1, . . . , xn) be a minimizer of (4.2), we need
to solve the normal equation

�g(x1, . . . , xn) = 0 (4.3)

A good reference on this topic can be found in the book, Solving Least Squares
Problems, by Lawson and Hanson.

4.1 Linear Least Square Problems

Example. (Polynomial Fitting) Let (zi, yi), i = 1, . . . ,m be the observed
quantities. Suppose the function f in (4.1) is an (n− 1)-th degree polynomial

f(z;x1, . . . , xn) = x1z
n−1 + . . .+ xn−1z + xn. (4.4)
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Then data fitting problem is to solve the system⎡
⎢⎢⎢⎢⎢⎣

zn−1
1 zn−2

1 . . . z1 1
zn−1
2
...

zn−1
m zn−1

m . . . zm 1

⎤
⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎣

x1

x2

...

xn

⎤
⎥⎥⎥⎥⎥⎦
=

⎡
⎢⎢⎢⎢⎢⎣

y1
y2
...

ym

⎤
⎥⎥⎥⎥⎥⎦

(4.5)

for the coefficients (x1, . . . , xn). Usually the system (4.5) is overdetermined, so
we consider the least square problem

min
x∈Rn

‖Ax− b‖22

where A ∈ Rm×n, b ∈ Rm are known quantities. Problem (4.1) where the
function f is linear in the parameters x1, . . . , xn is called a linear least square
problem.

Definition 4.1.1 Given A ∈ Rm×n, we define

R(A) : = {y ∈ Rm|y = Ax for some x ∈ Rn} (4.6)

= The range space of A.

N(A) : = {x ∈ Rn|Ax = 0} = The null space of A. (4.7)

Theorem 4.1.1 For every z ∈ Rm, there exist a unique y ∈ R(A), and unique
w ∈ N(AT ) such that z = y + w. That is

Rm = R(A)⊕N(AT ).

(pf): It suffices to prove R(A)⊥ = N(AT ). Now w ∈ N(AT ) ⇔ ATw = 0 ⇔
xTATw = 0 for all x ∈ Rn ⇔ w⊥Ax for all x ∈ Rn ⇔ R(A). ⊕

Theorem 4.1.2 The linear least squares problem (4.1) has a solution for every
b. The solution is unique if and only if N(A) = {0}.

(pf): By (4.1.1, we may rewrite b = b1+ b2 with b1 ∈ R(A) and b2 ∈ N(AT ).
Now Ax − b = (Ax − b1) − b2. Since Ax − b1 ∈ R(A), Ax − b2⊥b2. So
‖Ax − b‖22 = ‖Ax − b1‖22‖22. Note that b2 is fixed whenever b is given. Thus
‖Ax− b‖ is minimized if and only if Ax = b1. But b1 ∈ R(A). So there exists
x0 ∈ Rn such that Ax0 = b1 and min ‖Ax− b‖ = ‖b2‖. If N(A) = (0), then the
solution of Ax = b1 is unique. The converse is true also. ⊕
Remark. In the proof of (4.5), we realize that the minimizer x0 of (4.1) must
satisfy the equation Ax0 − b = −b2 ∈ N(AT ). It follows that x0 must satisfy
the equation (necessary condition)

ATAx = AT b.

This linear system is called the normal equation. If, in particular, ATA is
nonsingular (This is so if A is of full column rank), then the unique solution of
(4.1) is given by x = (ATA)−1Ab.
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We discussed in Section 2.5 that for any matrix A ∈ Rm×n, there exist

an orthogonal matrix Q ∈ Rm×m and R =

⎡
⎣ R1

0

⎤
⎦ ∈ Rm×n with R1 upper

triangular such that
QTA = R. (4.8)

Note that orthogonal transformations leave the norm ‖x‖2 of a vector x invariant

(‖V x‖2 =
√
xTV TV x = ‖x‖2). Denoting QT b := [hT

1 , h
T
2 ]

T , we see that

‖Ax− b‖22 = ‖QT (Ax− b)‖22 = ‖

⎡
⎣ R1

0

⎤
⎦x−

⎡
⎣ h1

h2

⎤
⎦ ‖22 = ‖R1x−h1‖22+ ‖h2‖22.

Hence ‖Ax− b‖2 is minimized if x is chosen so that

R1x = h1. (4.9)

If we assume that A is of full column ran, then R1 is nonsingular and (4.9) has
a unique solution.

4.2 Singular Value Decomposition

Given any A ∈ Rm×n, ATA ∈ Rn×n is symmetric and positive semi-definite.
So ATA has a complete set of orthogonal eigenvectors and all eigenvalues of
ATA are non-negative. We have similar situation for the matrix AAT ∈ Rm×m.
Let the positive eigenvalues of ATA be denoted as σ2

1 ≥ σ2
2 ≥ . . . ≥ σ2

r > 0.

Lemma 4.2.1 The two matrices ATA and AAT have the same positive eigen-
values. More precisely, let uj ∈ Rn be the normalized eigenvector of ATA
associated with the eigenvalue σ2

j . Then Auj ∈ Rm is an eigenvector of AAT

whose corresponding eigenvalue is also σ2
j . If we take vj := Auj/σj, then vj is

normalized.

(pf): If ATAuj = σ2
juj , then (AAT )Auj = σ2

j (Auj). Also, since uj is

normalized, uT
j A

TAuj = ‖Auj‖22 = σ2
j .

Definition 4.2.1 The numbers σ1 ≥ σ2 ≥ . . . ≥, σr > σr+1 = . . . = 0 are
called the singular values of A.

Definition 4.2.2 The normalized eigenvectors u1, . . . , un (or, v1, . . . , vm) of
ATA (or, AAT ) are called the right (or, left) singular vectors of A.

Remark. Let U := [u1, . . . , un] ∈ Rn×n where columns are orthonomal eigen-
vectors of ATA. Define V := [v1, . . . , vm] ∈ Rm×m where

(1) For j = 1, . . . , r, vj = Auj/σj , and
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(2) {vr+1, . . . , vm} are orthonormal eigenvectors corresponding to the zero
eigenvalue of AAT .

Then both U and V are orthogonal matrices. Furthermore,

Theorem 4.2.1 With U and V given above, we have

A = V

[
Σ 0
0 0

]
UT (4.10)

where Σ := diag {σ1, . . . , σr}.

(pf): Write U = [U1, U2], V = [V1, V2]. Then

V TAU =

[
V T
1

V T
2

]
A[U1, U2] =

[
V T
1 AU1 V1AU2

V T
2 AU1 V T

2 AU2

]
.

Note that AU2 = 0, V T
2 AU1 = V T

2 V1Σ = 0 and V T
1 AU1 = Σ by the choice of

V .

Definition 4.2.3 The composition in (4.10) is called the singular value decom-
position of A.

Theorem 4.2.2 Let A ∈ Rm×n and have singular value decomposition given
by (4.10). Then the vector x̃ given by

x̃ := U

[
Σ−1, 0
0, 0

]
V T b (4.11)

minimizes ‖Ax− b‖2 among all x ∈ Rn. Moreover, if x is another least square
solution of (4.1), then ‖x̃‖2 ≤ ‖x‖2.

(pf): We observe ‖Ax − b‖22 = ‖V T (Ax − b)‖22 = ‖V TAUUTx − V T b‖22 =

‖
[

Σ, 0
0, 0

]
z − c‖22 with z := UTx and c := V T b. Write z :=

[
z1
z2

]
and

c :=

[
c1
c2

]
with z1, c1 ∈ Rr. Then ‖Ax − b‖22 = ‖

[
Σz1 − c1

c2

]
‖22 = ‖Σz1 −

c1‖22 + ‖c2‖22. Obviously, ‖Ax− b‖ is minimized if and only if z1 = Σ−1c1. Note

that z2 can be arbitrary. Suppose we choose z̃ =

[
Σ−1c1

0

]
. Then x̃ = Uz̃ =

U

[
Σ−1c1

0

]
= U

[
Σ−1, 0
0, 0

] [
c1
c2

]
= U

[
Σ−1, 0
0, 0

]
V T b. For any other least

squares solution x, the corresponding z must be of the form

[
Σ−1c1
z2

]
. Thus

‖x‖22 = ‖Uz‖22 = ‖z‖22 = ‖Σ−1c1‖22 + ‖z2‖22 ≥ ‖z̃‖22 = ‖x̃‖22.
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4.3 Nonlinear Least Squares Problems

Nonlinear least squares problems (4.2) may be solved by general unconstrained
minimization techniques. (cf: Practical Optimization by Gill, Murray and
Wright). The special form of (4.2), however, make it worthwhile to use methods
designed specifically for the least squares problems.

For demonstrate, we shall consider the following problem

Minimize F (x) =
1

2

m∑
i=1

fi(x)
2 =

1

2
‖f(x)‖22 (4.12)

where x ∈ Rn, fi : Rn → R and f(x) = (f1(x), . . . , fm(x))T are smooth
functions of x. A necessary condition for x of being a critical point is

g(x) := �F (x) = 0 (4.13)

Toward this, we calculate

g(x) := �F (x) = J(x)T f(x) (Justify this!) (4.14)

where

J(x) :=
∂f

∂x
:=

⎡
⎣

∂f1
∂x1

, ∂f1
∂x2

, . . . , ∂f1
∂xn

∂fm
∂x1

, ∂fm
∂x2

, . . . , ∂fm∂xn

⎤
⎦ (4.15)

is the m× n Jacobian matrix of f . Note that g : Rn → Rn. So we may apply
the Newton-Ralphson method to solve g(x) = 0, i.e., let x(k) denote the current
estimate of x, we calculate a Newton step pk by solving

g′(x(k))pk = −g(x(k)) (4.16)

and then update
x(k+1) = x(k) + τkpk, (4.17)

where the parameter τk is chosen to guarantee the sequence {F (x(k+1)} is
strictly monotone decreasing. The matrix g′(x) (the Hessian of F ) is calcu-
lated as

g′(x) = Jf (x)
TJf (x) +

m∑
i=1

Hi(x)fi(s) (Justify this !) (4.18)

where

Hi(x) := [
∂2fi

∂xs∂xt
] (4.19)

is the Hessian matrix of fi(x).
Generally, if ‖fi‖ tends to zero as x(k+1) approaches the solution, the second

matrix in (4.18) also tends to zero. Thus the Newton direction is approximated
by the solution of the equation

J(x(k))TJ(x(k))Pk = −J(x(k))T f(x(k)). (4.20)
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We note that the solution of (4.20) is the solution of the linear least squares
problem

Minimize
1

2
‖J(x(k))p+ f(x(k))‖22, (4.21)

and is unique if J(x(k)) has full column ran. We note also that the Taylor series
expansion

f(x) ≈ f(x) + J(x)(x− x) ≈ f(x) + J(x)(x− x), (4.22)

if x is close to x. Thus

Minimize
1

2
‖f(z)‖22 ≈

1

2
‖J(x)(z − x) + f(x)‖22. (4.23)

In other words, the linear least squares problem (4.21) may be regarded as a
linear approximation to the nonlinear problem (4.12). The vector that solves
(4.21) is called the Gauss-Newton direction. The method in which this vector
is used as a search direction is known as the Gauss-Newton method.


