
Chapter 5

Algebraic Eigenvalue
Problems

Eigenvalue analysis is an important practice in many fields of engineering or
physics. We also have seen in this course that eigenvalue analysis play an
important role in the performance of many numerical algorithms. A general
eigenvalue problem is stated as follows:

Definition 5.0.1 Given n×n matrices A and B, find numbers λ such that the
equation

Ax = λBx (5.1)

is satisfied for some nontrivial vector x �= 0.

If B is invertible, then (5.1) can be reduced to

Cx = λx. (5.2)

Even if both A and B are real-valued, it is likely that λ and x are complex-
valued. Finding the solution of eigensystems is a fairly complicated procedure.
It is at least as difficult as finding the roots of polynomials. Therefore, any
numerical method for solving eigenvalue problems is expected to be iterative in
nature. Algorithms for solving eigenvalue problems include the power method,
subspace iteration, the QR algorithm, the Jacobi method, the Arnoldi method
and the Lanczos algorithm.

Some major references in this field are given at the end of this note.

5.1 Perturbation Theory

Given A = (aij) ∈ Rn×n, define ri :=
∑n

j �=i |aij | for all i. Let Ci := {x ∈
C| |x− aii| ≤ ri}. Then
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Theorem 5.1.1 (Gerschgorin) Every eigenvalue λ of A belongs to one of the
circles Ci. Moreover, if m of the circles form a connected set S disjoint from
the remaining n−m circles, then S contains exactly m eigenvalues.

(pf): Let λ be a eigenvalue of A and let x be the corresponding eigenvector,
i.e. Ax = λx. Let k be the index for which ‖x‖∞ = |xk|. Then Σakjxj = λxk

implies (λ− akk)xk =
∑

j �=k akjxj . It follows that |λ− akk| ≤ rk, i.e., λ ∈ Ck.
We know that eigenvalues are roots of the characteristic polynomial p(λ) =

det(λI − A) whereas coefficients of p(λ) are polynomials in aij . We also know
that the zeros of a polynomial depend continuously on its coefficients. So we
conclude that the eigenvalues of a matrix depend continuously on its elements.
Consider A(ε) := D + ε(A −D) where D is the diagonal of A and 0 ≤ ε ≤ 1.
When ε = 0, all circles degenerate into points since A(0) = D. As ε increases,
all circles expand. Note A(1) = A. As ε is changed, each eigenvalue λ(ε) is
varied continuously in the complex plane and mark out a path from λ(0) to
λ(1). Circles that are disjoint for ε = ε0 are necessarily disjoint for all ε < ε0.
By the continuity of λi(ε) in ε, eigenvalues cannot go from a connected set to
another disjoint set. The theorem is proved. ⊕

Theorem 5.1.2 (Bauer-Fike) If μ is an eigenvalue of A + E ∈ Cn×n and
P−1AP = D = diag {λ1, . . . , λn}. Then

min |λ− μ| ≤ κ(P )‖E‖ (5.3)

where ‖ · ‖ denotes any induced norm.

(pf): Consider (A + E)x = μx. Then (μI − A)x = Ex, (μI − D)P−1x =
(P−1EP )P−1x. Assuming μ �= λi, then it follows that ‖P−1x‖ ≤ ‖(μI −
D)−1P−1EP‖‖P−1x‖. If an induced norm is used, then ‖μI−D)−1‖ = max 1

|μ−λ| .

The theorem is proved. ⊕
Example. Let A =

[
101, −90
110, −98

]
, E =

[
−ε, −ε
0, 0

]
. The eigenvalues of A

are {1, 2}. The eigenvalues of A + E are { 3−ε±
√
1−838ε+ε2

2 }. When ε = 0.001,
the eigenvalues are approximately {1.298, 1.701}. Thus min |λ − μ| ≈ 0.298.
This example shows that a small perturbation E can lead to relative large
perturbation in the eigenvalues of A.
Remark. When A is a normal matrix, i.e., when AA∗ = A∗A (This class of
matrices include symmetric matrices, orthogonal matrices, hermitian matrices,
etc.), it is known that P may be chosen to be a unitary matrix (i.e., PP ∗ =
I). If we use the L2-norm, then ‖P‖2 = ‖P−1‖2 = 1. In this case, we have
min ‖λ−μ| ≤ ‖E‖2. This implies that eigenvalue problems for normal matrices
are well-conditioned.
Remark. When talking about the perturbation of eigenvectors, some cautions
should be taken.

(1) Eigenvectors are unique up to multiplicative constants. Continuity should
be discussed only under the assumption that all vectors are normalized in the
same way.
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(2) There are difficulties associated with multiply eigenvalues. For example,

the matrix

[
1 + ε, 0
0, 1− ε

]
has eigenvectors [1, 0]T and [0, 1]T whereas the matrix

I has eigenvectors everywhere in R2.
Examples. (1) Consider the matrix

A =

⎡
⎢⎢⎢⎢⎣

1 1 0 0 0
0 1 1 0 0
0 0 1 1 0
0 0 0 1 1
0 0 0 0 1

⎤
⎥⎥⎥⎥⎦

which is already in the Jordan Canonical form. It is not diagonalizable and
has eigenvalues λ = 1 as an n-ford eigenvalues. Consider a slightly perturbed
matrix

A+E =

⎡
⎢⎢⎢⎢⎣

1 1 0 0 0
0 1 1 0 0
0 0 1 1 0
0 0 0 1 1
ε 0 0 0 1

⎤
⎥⎥⎥⎥⎦ .

The eigenvalues of A + E are roots of p(λ) = (1 − λ)n − (−1)nε = 0. So

1 − λi = −(ε)
1/n
i where (ε)

1/n
i is the i-th of the n-th roots of ε. Note that

|λi(ε)− λi| = |ε1/n|. With n = 10 and ε = 10−10, we find that |λi(ε)− λi| = .1.
Note also that the matrix A has only one eigenvector whereas A + E has a
complete set of eigenvectors.

(2) Consider the matrix

[
2, −1010

0,2

]
. A is not diagonalizable. The exact

eigenvalue of A are {2, 2} Suppose that λ = 1 is an approximate eigenvalue with
eigenvector x = [1, 10−10[T . Then we find the residue r := Ax−λx = [0, 10−10]T .
Obviously, the residue is misleading.

5.2 Power Method and Its Variants

Given a matrixA ∈ Cn×n and x(0) ∈ Cn. We define an iteration x(k+1) := Ax(k)

for k = 0, 1, . . . What will happen to the sequence {x(k)}. If A is convergent,
then x(k) = Akx(0) → 0. If A is not convergent, then x(k) may grow unboundly.
Either case is undesirable. So we modify the process as follows.

Algorithm 5.2.1 (Power Method)
Given x(0) ∈ Cn arbitrary,
For k = 1, 2, . . ., do

w(k) := Ax(k−1)

x(k) :=
w(k)

‖w(k)‖∞
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There is nothing special about doing a sup-norm normalization. In fact, any
kind of normalization will be fine. We now examine the convergence properties
of the power method.

For illustration purpose, we shall assume A is diagonalizable with eigenvalues
|λ1| > |λ2| ≥ . . . ≥ |λn|. Let the corresponding eigenvectors be denoted by
x1, . . . xn. Detail discussion for other cases can be found in [1]. Suppose x(0) =∑n

i=1 αixi. Then

Ax(0) =
n∑

i=1

αiλixi

Akx(0) =
n∑

i=1

αiλ
k
i xi = λk

1

(
α1x1 +

n∑
i=2

αi

(
λi

λ1

)k

xi

)
.

Assume α1 �= 0 (This is guaranteed if x(0) is selected randomly). We observe

x(k) = Ax(k−1)

‖Ax(k−1)‖∞
=

A
(

w(k−1)

‖w(k−1)‖∞

)
‖A
(

w(k−1)

‖w(k−1)‖∞

)
‖∞

= A2x(k−2)

‖A2x(k−2)‖∞
=

Akx(0)

‖Akx(0)‖∞
.

It is clear that as k → ∞, the vector Akx(0)behaves like α1λ
k
1x1 in the sense that

contribution from x2, . . . xn becomes less and less significant. Normalization

makes x(k) → α1λ
k
1

|α1λk
1 |

x1

‖x1‖∞
. That is, x(k) converges to an eigenvector associated

with the eigenvalue λ1. Also, w
(k+1) = Ax(k) → λ1x

(k). So (Ax(k))j

x
(k)
j

→ λ1.

Remark. It is clear that the rate of convergence of power method depends on
the ratio λ2

λ1
.

Remark. The eigenvalues of the matrix A− bI for a scalar b are λi − b if and
only if λi are eigenvalues of A. With this shift in mind, we can work on the
matrix A−bI instead of A with the hope that the ratio of the first two dominant
eigenvalues λi − b will become smaller. This is called a shifted power method.
It is not hard to find that the application is very limited. For example, assume
all eigenvalues are real and are distributed as follows: Then with all choices of

-2 -1 0 2 4

λ3 λ4 λ2 λ1

converges to λ1 converges to λ3

b the shifted power method will converge to either λ1 or λ3, but not any other
eigenvalues. The idea is plausible, however, in the following setting.



5.2. POWER METHOD AND ITS VARIANTS 5

Suppose A is nonsingular, then A−1 has eigenvalues 1
λ1
, . . . , 1

λn
. We apply

the power method to A−1, i.e., we define

Algorithm 5.2.2 (Inverse Power Method)
Given x(0) ∈ Cn arbitrary, For k = 1, 2, . . ., do

Aw(k) := x(k−1)

x(k) :=
w(k)

‖w(k)‖∞
.

If we assume |λ1| ≥ . . . ≥ |λn−1| > |λn|, then {x(k)} converges to an eigen-

vector associated with λn at the rate depending on |λn−1

λn
|. Now we incorporate

with the shift idea to obtain the following algorithm.

Algorithm 5.2.3 (Shifted Inverse Power Method)
Given x(0) ∈ Cn arbitrary,
For k = 1, 2, . . ., do

(A− bI)w(k) := x(k−1)

x(k) :=
w(k)

‖w(k)‖∞

The eigenvalues of (A − bI)−1 are 1
λ1−b , . . . ,

1
λn−b . So whenever b is chosen

close enough to the eigenvalue λi, the sequence {x(k)} by the shifted inverse
power method converges to an eigenvector associate with the eigenvalue 1

λi−b .
Example. Suppose eigenvalues are distributed as follows: Then the longer

-2 -1 0 2 4

λ3 λ4 λ2 λ1

vertical bars separates the regions of b by which the shifted inverse power method
will be able to find, respectively, different eigenvalues.
Remark. There are several ways to choose the shift b:

(1) If some estimate of λi has been found, we may use it for b.

(2) We may generate b(0) at random. Then define

b(k+1) :=
(w(k))∗Aw(k)

(w(k))∗w(k)
(5.4)

successively. This is a variable-shift inverse power method, and is known as the
Rayleigh Quotient Iteration. It can be shown that the rate of convergence is
cubic [2].
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Remark. In the inverse power method, we have to solve a linear system

(A− bI)w(k) = x(k−1). (5.5)

When b is close to some eigenvalue λi, the matrix A− bI is nearly singular. We
expect that small errors in x(k−1) would lead to large errors in the computation
of w(k). Fortunately, this error mainly occurs in the direction of x(k). Thus after
normalization the method is still useful in practice. (See, [2], for a justification.)

5.3 The OR algorithm

The basic idea behind the QR algorithm is from a sequence of matrices {Ai}
that are isospectral to the original matrix A1 := A and that converge to a special
form from which the eigenvalues can readily be known. For simplicity, we shall
restrict our discussion for real matrices in the sequel.

Algorithm 5.3.1 (Basic QR algorithm)

Given A ∈ Rn×n, define A1 := A.

For k = 1, 2, . . ., do

Calculate the QR decomposition Ak = QkRk,

Define Ak+1 := RkQk.

Remark. We observe that Ak+1 = RkQk = QT
kAkQk. So Ak+1 is orthogonally

similar to Ak. By induction, the sequence {Ak} is isospectral to A.

Definition 5.3.1 We say matrix A ∈ Rn×n is upper Hessenberg if and only if
Aij = 0 for all i− 2 ≥ j.

The QR algorithm is expensive because of the large number of computations
that must be performed at each step. To save this overhead, the matrix A
usually is simplified first by orthogonal similarity transformations to an upper
Hessenberg matrix. This can be accomplished as follows:

Given A, let U2 be the unitary matrix U2 =

⎡
⎢⎢⎣

1, 0, . . . , 0
0,

Ũ2

0,

⎤
⎥⎥⎦ where Ũ2 is

formed by the Householder transformation for the column vector [a21, . . . an1]
T .

Thus U2A =

⎡
⎢⎢⎢⎢⎢⎣

unchanged
x x . . . x
0 x x
...

...
...

0 x . . . x

⎤
⎥⎥⎥⎥⎥⎦ . It is clear that U2AU

T
2 does not

change the first column of U2A. Continuing this procedure, A is transformed
by orthogonal similarity transformations into an upper Hessenberg matrix.
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Definition 5.3.2 An orthogonal matrix of the form⎡
⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0
0 cos θ 0 0 sin θ 0
0 0 1 0 0 0
0 0 0 1 0 0
0 − sin θ 0 0 cos θ 0
0 0 0 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎦

−→ j − th row

−→ k − th row

is called a rotation matrix in the (j, k)-plane and is denoted as Ωjk.

Example. Consider the 2× 2 matrix A =

[
a11, a12
a21, a22

]
. Then

[
c s
−s c

] [
a11, a12
a21, a22

]
=

[
ca11 + sa21, ca12 + sa22
−sa11 + ca21, −sa12 + ca22

]
.

Thus if we choose c := a11√
a2
11+a2

21

and s = a21√
a2
11+a2

21

, then the (2, 1)-position

of the product becomes zero. The matrix

[
c s
−s c

]
amounts to the rotation

of the coordinate axes by an angle determined by tan θ = s
c = a21

a11
. This idea

has been incorporated into the so called Given’s method for solving eigenvalue
problems:

Suppose A is an upper Hessenberg matrix. Then the QR decomposition of
A can be calculated by a sequence of plane rotations. This is demonstrated as
follows:

A1 =

⎡
⎢⎢⎣

x x x x
x x x x
0 x x x
0 0 x x

⎤
⎥⎥⎦ −→ Ω12A1 = A2 =

⎡
⎢⎢⎣

∗ ∗ ∗ ∗
0 ∗ ∗ ∗
0 x x x
0 0 x x

⎤
⎥⎥⎦

−→ Ω23A2 = A3 =

⎡
⎢⎢⎣

x x x x
0 ∗ ∗ ∗
0 0 ∗ ∗
0 0 ∗ ∗

⎤
⎥⎥⎦

−→ Ω34A3 = A4 =

⎡
⎢⎢⎣

x x x x
0 x x x
0 0 ∗ ∗
0 0 0 ∗

⎤
⎥⎥⎦ = R.

Working with upper Hessenberg matrices, the QR decomposition will only take
O(n2) flops, while with general matrices, the QR decomposition requires O(n3)
flops.
Remark. It is important to note that if A1 = A is upper Hessenberg, then
the orthogonal matrix Q1 in the QR decomposition of A1 = Q1R1 is also upper
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Hessenberg (Prove this!). Therefore, A2 = R1Q1 maintains to be upper Hessen-
berg. It follows that the upper Hessenberg structure is maintained throughout
the QR algorithm.

We have seen that

Ak+1 = QT
kAkQk = QT

k . . . QT
1 AQ1 . . .Qk.

Let us call

Pk : = Q1 . . . Qk (5.6)

Uk : = Rk . . . R1. (5.7)

Note that Pk is still orthogonal and Uk upper triangular. Moreover,

PkUk = (Q1 . . .Qk)(Rk . . . R1) = (Q1 . . . Qk−1)Ak(Rk−1 . . .R1)

= (Q1 . . .Qk−1)(Q
T
k−1 . . .Q

T
1 AQ1 . . . Qk−1)(Rk−1 . . .R1)

= APk−1Uk−1 = . . . = Ak. (5.8)

In other words, we have found that PkUk is the QR decomposition of the matrix
Ak

Theorem 5.3.1 Suppose A ∈ Rn×n and suppose |λ1| > . . . > |λn| > 0. Then
the sequence {Ak} converges to an upper triangular matrix.

(pf): From the assumption, we know all eigenvalues of A are real and dis-
tanct. So A is diagonalizable. Let P be the nonsingular matrix such that
P−1AP = D := diag {λ1, . . . , λn}. Then Ak = PDkP−1. Let P−1 = LU
be the LU decomposition of P−1 with value 1 along the diagonal of L (We as-
sume this LU decomposition exists with some prior pivoting if necessary). Then
Ak = PDkLU = P (DkLD−k)DkU . Consider DkLD−k. The (i, j)-component
is (λi

λj
)klij . Since L is lower triangular, only the lower triangular i.e., i ≥ j,

portion needs to be considered.
Let DkLD−k := I + Ek. By the ordering of λi, we see that Ek −→ 0 as

k −→ ∞. Let P := QR. Then

Ak = QR(DkLD−k)DkU

= QR(I +Ek)D
kU = Q(I +REkR

−1)RDkU

= Q(Q̃kR̃k)RDkU = (QQ̃k)(R̃kRDkU). (5.9)

where Q̃kR̃k is the QR decomposition of I +REkR
−1.

We recall the issue of uniqueness of the QR decomposition of a matrix.
Suppose a nonsingular matrix B has two QR decompositions, say B = QR =
Q̃R. Then QT Q̃ = RR̃−1. But QT Q̃ is orthogonal whereas RR̃−1 is upper
triangular. An orthogonal and upper triangular matrix is diagonal with absolute
value 1 along its diagonal. If we call RR̃−1 := D, then Q̃ = QD and R̃ = D−1R.
So the QR decomposition of B is unique if the diagonal elements of R are
required to be positive.
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We have already known Ak = PkUk. Thus A
k has two QR decompositions.

It follows that

Pk = QQ̃kD̃k

Uk = D̃−1
k R̃kRDKU = D̃kR̃kRDkU

where D̃k is a diagonal matrix with elements either 1 or -1. Now

Ak+1 = PT
k APk = (QQ̃kD̃k)

TA(QQ̃kD̃k) = D̃kQ̃
T
k (Q

TAQ)(Q̃kD̃k)

= D̃kQ̃
T
k (RP−1APR−1)(Q̃kD̃k)

= D̃kQ̃
T
k (RDR−1)(Q̃kD̃k). (5.10)

Note thatRDR−1 is an upper triangular matrix with diagonal elements λ1, . . . , λn.
Observe also that I + REkR

−1 converges to I as k −→ ∞ since Ek −→ 0. So
R̃k = Q̃k(I + REkR

−1) −→ Q̃T
k as k −→ ∞. Since R̃k is upper triangular

with positive diagonal elements, R̃k and Q̃k −→ I as k −→ ∞. Thus we see
from (5.10) that Ak+! −→ an upper triangular matrix with λ1, . . . , λn along the
diagonal. ⊕
Remark. From the above proof, we see that the rate of convergence depends
on the ration maxj |λj+1

λj
|. It is, therefore , desired to use the shift technique to

accelerate the convergence.

Algorithm 5.3.2 (QR algorithm with origin shift)(Explicit shift)
Given A ∈ Rn×n , define A1 := A.
For k = 1, 2, . . ., do

Select a shift factor ck;
Calculate the QR decomposition,

Ak − ckI = QkRk; (5.11)

Define
Ak+1 := RkQk + ckI. (5.12)

Remark. We note that Rk = QT
k (Ak − ckI). So Ak+1 = QT

k (Ak − ckI)Qk +
ckI = QT

kAkQk. That is, Ak+1 and Ak are orthogonally similar.

Definition 5.3.3 Suppose Ak is upper Hessenberg. The shift factor ck may be
determine from the eigenvalues, say μk or νk, of the bottom 2× 2 submatrix of
Ak. If both μk and νk are real, we take ck to be μk or νk according to whether

|μk − a
(k)
nn | or |νk − a

(k)
nn | is smaller. If μk = νk, then we choose ck = νk. Such

a choice of shift factor is known as the Wilkinson shift.

Theorem 5.3.2 Given any matrix A and the relationship B = QTAQ. Suppose
B is upper Hessenberg with positive and diagonal elements and suppose Q is
orthogonal. Then matrices Q and B are uniquely determined from the first
column of Q.
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(pf): This is homework problem.
Remark. Let A be any given matrix and let B = QTAQ be an upper Hessen-
berg matrix. Let PT be an orthogonal matrix whose first column agrees with
that of Q. Suppose PAPT is reduced to upper Hessenberg, that is, suppose
U1, . . . , Un−2 are orthogonal matrices such that

B̃ := Un−2 . . . U1(PAPT )U1 . . . U
T
n−2

becomes an upper Hessenberg matrix (Recall how this is done!). Let Q̃ =
PTUT

1 . . . UT
n−2. Then we have Q̃TAQ̃ = B̃. Note that the first column of Q̃ is

the same as that of Q. From Theorem 5.3.1, we conclude that B̃ = B.
Suppose Ak is upper Hessenberg. There is an easier way to compute Ak+1 =

QT
kAkQk from Ak based on the above theorem and remark: Since Ak is upper

Hessenberg, the first column ofQk is known, i.e., it is the column [c,−s, 0, . . . , 0]T

with

c :=
a
(k)
11 − ck√

(a
(k)
11 − ck)2 + a

(k)
21

s :=
a
(k)
21√

(a
(k)
11 − ck)2 + a

(k)
21

.

So the first column of PT is known and PT can be chosen to be the matrix

PT :=

⎡
⎢⎢⎣

c s 0 0
−s c 0 0
0 0 1 0
0 0 0 1

⎤
⎥⎥⎦

It is easy to see that PAkP
T is at most a matrix of the form

PAkP
T =

⎡
⎢⎢⎢⎢⎣

x x x x x
x x x x x
x x x x x
0 0 x x x
0 0 0 x x

⎤
⎥⎥⎥⎥⎦

So we can make a rotation in the (2.3)-plane to eliminate the nonzero element
at the (3, 1)-position. In doing so, the (4, 2)-position becomes nonzero. We
continue to chase the nonzero elements by n− 2 rotations to produce Ak+1.

Suppose we have applied one QR step with shift c1 to obtain A2 = QT
1 A1Q1

and other QR step with shift c2 to obtain A3 = QT
2 A2Q2 = QT

2 Q
T
1 A1Q1Q2.

Then we may as well using the first column of Q1 Q2 to compute A3 from
A1 by using Theorem 5.3.1 and the above remark. We recall that A1 − c1I =
Q1R1, A2 = R1Q1+c1I, A2−c2I = Q2R2 and A3 = R2Q2+c2I. It follows that
T2 = (A3 − c2I)Q

T
2 = (QT

2 Q
T
1 A1Q1Q2 − c2I)Q

T
2 = QT

2 Q
T
1 (A1 − c2I)Q1. Thus

R2R1 = QT
2 Q

T
1 (A1 − c2I)Q1R1, or equivalently Q1Q2R2R1 = (A1 − c2I)(A −

c1I) = A2 − (c0 + c1)A + c0c1I. That is, the first column of Q1Q2 is seem to
be the normalized first column of the matrix A2 − (c0 + c1)A + c0c1I. This is
implicit double shift.
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5.4 Exercises

1. Let p be a chosen integer satisfying 1 ≤ p ≤ n. Given an n× p matrix Q0

with orthonormal columns, consider the iteration

Zk = AQk−1

QkRk = Zk (QR factorization)

for k = 1, 2, . . .. Explain why this iteration can usually be used to compute
the p largest eigenvalues of A in absolute value. How then should you
modify the iteration when the p smallest eigenvalues of A in absolute
value are needed.

2. Prove that the upper Hessenberg structure is maintained throughout the
QR algorithm. That is, if Ak = QkRk is an upper Hessenberg matrix,
show that Ak+1 = RkQk is also upper Hessenberg.

3. Prove Theorem 5.3.2.

4. Compute a QR step with the matrix

A =

[
2 ε
ε 1

]

(a) without shift;

(b) with shift k = 1.

5. Assume A = diag(λ1, λ2) with λ1 > λ2. Assume

xk =

(
ck
sk

)

with c2k + s2k = 1 is an approximate eigenvector.

(a) Compute the Rayleigh quotient of xk.

(b) Compute, by pen and paper, the next Raleigh quotient iteration
xk+1.

(c) Comparing xk and xk+1, give an explanation why the convergence of
the Rayleigh quotient iteration is ultimately cubic.
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