
Chapter 10

Numerical Ordinary
Differential Equations -
Boundary Value Problems

10.1 Ordinary Shooting Method — An Example

Consider a second-order linear 2-point boundary value problem (BVP)

−z′′ + p(x)z′ + q(x)z = r(x) (10.1)

z(a) = α (10.2)

z(b) = β (10.3)

where p(x), q(x) and r(x) are given. By defining y(x) := [z(x), z′(x)]T , the
problem can be changed into a first-order differential system

y′ =

[
0 1

q(x) p(x)

]
y +

[
0

−r(x)

]
(10.4)

y1(a)− α = 0 (10.5)

y2(b)− β = 0. (10.6)

Remark. In general, a linear 2-point BVP can be written as

y′ = A(x)y +Φ(x) (10.7)

g(y(a), y(b)) = 0 (10.8)

where y,Φ and g are n-dimensional vectors and A(x) ∈ Rn×n.
Consider the following IVP associated with (10.4),

u′ =

[
0 1

q(x) p(x)

]
u+

[
0

−r(x)

]
(10.9)

u(a) =

[
α
s

]
. (10.10)
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2 Boundary Value Problems

Denote the corresponding solution of (10.9) as

u(x; s) =

[
u1(x; s)
u2(x; s)

]
. (10.11)

By a shooting method we mean to find an appropriate value of s so that

G(s) := u(b;x)− β = 0. (10.12)

Thus, a shooting method reduces a BVP into the problem of solving a nonlinear
equation (10.12). Any variation of the Newton method, e.g.,

sn+1 = sn − (G′(sn))
−1G(sn) (10.13)

can be used to hlep to accomplish this goal. To carry out the shooting method,
several additional numerical procedures are required:

1. One needs an initial guess on s0.

2. One needs to numerically integrate (10.9) with initial condition [α, s0]
T to

the point x = b to obtain the value of G(s0) as is defined in (10.12).

3. The derivative G′(s0) can be obtained from the difference approximation

G′(x(s0)) ≈
G(s0 +Δs)−G(s0)

Δs
, (10.14)

or from the variation equation associated with (10.9), i.e., if

ξ(x; s) :=
∂u(x; s)

∂s
, (10.15)

then

dξ(x; s)

dx
= A(x)ξ(x; s) (10.16)

ξ(a; s) =

[
0
1

]
(10.17)

and
G′(s) = ξ1(b). (10.18)

4. Apply one Newton step such as (10.13) to advance to s1.

5. Repeat steps 2 to 4 with s0 being replaced by the new s1 until convergence.

Example. Consider the singular perturbed problem

εz′′ + (1 + ε)z′ + z = 0 (10.19)

z(0) = 0 (10.20)

z(1) = 1 (10.21)
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with ε �= 0. The exact solution is given by

z(x) =

{
e−x−e−x/ε

e−1−e−1/ε if ε �= 1

exe−x if ε = 1.
(10.22)

The associated IVP is

u′ =

[
0 1
− 1

ε − 1+ε
ε

]
, (10.23)

and the exact solution u(x; s) for ε �= 1 is given by

u(x; s) =

[
s

1−1/ε (e
−x/ε − e−x)

s
1−1/ε (−

e−x/ε

ε + e−x)

]
. (10.24)

So the desired s is the the zero of

G(s) =
s

1− 1/ε
(e−1/ε − e−1)− 1. (10.25)

Denote δ(ε) := 1
s . We see that limε→0− = ∞. Thus, for −1 << ε < 0, the right

endpoint is very sensitive to the variation of s.

10.2 Multiple Shooting Methods — The Set-up

Consider the problem

y′ = f(x, y) (10.26)

Ay(a) +By(b) = α (10.27)

where x ∈ [a, b], A,B ∈ Rn×n, rank[A,B] = n, and y, f, α ∈ Rn. Let the
interval [a, b] be partitioned into a = x0 < x1 < . . . < xm = b. Denote
yj(x) := y(x;xj−1, sj−1) as the solution of the IVP

y′ = f(x, y) (10.28)

y(xj−1) = sj−1 (10.29)

in the interval [xj−1, xj ] for j = 1, . . . ,m. The idea of multiple shooting is to
determine the n×m matrix

S := [s0, s1, . . . , sm−1] (10.30)

so that the following conditions are satisfied.

• (Continuity condition)

y(xj ;xj−1, sj−1) = sj , for j = 1, . . .m− 1 (10.31)
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• (Boundary condition)

As0 +By(b;xm−1, sj−1) = α. (10.32)

Let Δj = xj − xj−1. Introduce the new variable

τ :=
x− xj−1

Δj
(10.33)

and define
ŷj(τ) := yj(xj−1 + τΔj) (10.34)

over the interval [xj−1, xj ]. Then (10.28) can be transformed into

dŷj(τ)

dτ
= Δjf(xj−1 + τΔj , ŷj(τ)) = fj(τ, ŷj) (10.35)

ŷj(0) = sj−1. (10.36)

By this scaling, (10.31) and (10.32) become

ŷj(1) = ŷj+1(0) for j = 1, . . .m− 1 (10.37)

Aŷ1(0) +Bŷm(1) = α. (10.38)

Let

Y (τ) := [ŷ1(τ), . . . , ŷm(τ)]T

F (τ, Y ) := [f1(τ, ŷ1), . . . , fm(τ, ŷm)]T

β := [α, 0, . . . 0]T .

Then the application of the multiple shooting method to the BVP (10.26) can
be represented by a new system of 2-point BVP, i.e.,

dY

dτ
= F (τ, Y ), 0 ≤ τ ≤ 1 (10.39)

PY (0) +QY (1) = β (10.40)

where

P :=

⎡
⎢⎢⎢⎢⎢⎣

A 0 . . . 0
0 I 0

. . .

0 I

⎤
⎥⎥⎥⎥⎥⎦

and

Q :=

⎡
⎢⎢⎢⎢⎢⎣

0 0 . . . B
−I 0 0

. . .
. . .

0 −I 0

⎤
⎥⎥⎥⎥⎥⎦ .
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Remark. The 2-point BVP (10.39) incorporates both the original BVP
(10.26) and the multiple shooting method together. If the boundary condition
(10.40) is satisfied, then the continuity condition (10.31) and (10.32) required
by the multiple shooting are automatically satisfied.

To solve (10.39) we now apply the ordinary shooting method again. That
is, if we denote U(τ ;S) to be the solution of the IVP

dU

dτ
= F (τ, U) (10.41)

U(0) = S,

then we look for zeros of the equation

G(S) := PS +QU(1;S)− β = 0. (10.42)

Remark. It can be shown that a multiple shooting method has larger
domain of convergence than an ordinary shooting method.

Remark. The nonlinear equation G(S) = 0 resulted from a BVP by shoot-
ing is usually far more challenging and difficult because

1. The equation might have multiple solutions.

2. The close form of G(S) generally in not explicitly known. Neither is its
Jacobian matrix ∂G

∂S .

3. The endpoint of a BVP can be quite sensitive to the values at the initial
point, and thus makes a locally convergent method difficult to pick up an
appropriate initial guess.

10.3 Solving Nonlinear Equations — Homotopy
Method

The idea of a homotopy method is as follows. Given a system of algebraic
equation, we start with a particular simple system whose solution is known. We
then mathematically deform this simple system into the original, more difficult
system. While deforming the systems, we carefully trace the corresponding
deformation of the solution. Hopefully, the solution has also deformed from the
obvious solution into the solution we are looking for. This deformation process
is called a homotopy method.

Suppose we want to solve the system

F (x) = 0 (10.43)

where F : Rn −→ Rn. Let ERn −→ Rn be another system so that E(x0) = 0
for some known x0 ∈ Rn. We introduce a homotopy function

H : Rn ×R −→ Rn (10.44)
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such that H(x, 0) = E(x) and H(x, 1) = F (x). Consider the set

H−1(0) := {(x, t ∈ Rn ×R|H(x, t) = 0}. (10.45)

We want to construct H so that

• H−1(0) is a smooth path in Rn ×R.

• The homotopy path connects (x0, 0) to (x∗, 1).

Some of the choices of H are:

1. (Convex Homotopy)

H(x, t) := (1− t)E(x) + tF (x). (10.46)

2. (Fixed-point Homotopy)

H(x, t) := (1− t)(x− x0) + tF (x). (10.47)

3. (Newton Homotopy)

H(x, t) := (1− t)(F (x)− F (x0)) + tF (x) = F (x)− (1− t)F (x0) (10.48)

Remark. If can be shown with the help of differential topology that H−1(0)
is a 1-dimensional manifold under very mild assumptions on the functions F and
E.

If the existence of a homotopy path has been established, the next issue is
to following this path. Toward this end, we introduce the arc length σ along
the path as the parameter. Then the path is characterized as a solution to this
differential equation

dH

dσ
=

∂H

∂x

dx

dσ
+

∂H

∂t

dt

dσ
= 0. (10.49)

More precisely, we have[
∂H

∂x
,
∂H

∂t

] [
dx
dσ
dt
dσ

]
= 0 (10.50)[

x(0)
t(0)

]
=

[
x0

0

]
(10.51)

‖dx
dσ

‖2 + (
dt

dσ
)2 = 1. (10.52)

That is, the path H−1(0) is implicitly described by an initial value problem.
Example. Consider the Newton homotopy (10.48). We have

∂F

∂x

dx

dσ
+ F (x0)

dt

dσ
= 0. (10.53)
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Thus, we may write, if ∂F
∂x is invertible,

ẋ = − ṫ

1− t
(
∂F

∂x
)−1F (x). (10.54)

Obvious, with a suitable step size taken, one step of the Euler method applied
to (10.54) is equivalent to the classical Newton method.

We now examine how the homotopy method should be implemented for a
general 2-point BVP

y′ = f(x, y) (10.55)

g(y(a), y(b)) = 0. (10.56)

When a shooting method is applied to the BVP, we need to solve the nonlinear
algebraic equation

g(s, u(b; s)) = 0 (10.57)

where u(x; s) is the solution to the differential equation (10.55) with initial value
u(a) = s. Suppose we use the Newton homotopy, i.e.,

H(s, t) := g(s, u(b; s))− (1− t)g(γ, u(b; γ)) = 0. (10.58)

Then

∂H

∂s
=

∂g

∂y(a)
+

∂g

∂y(b)

∂u(b; s)

∂s
(10.59)

∂H

∂t
= g(γ, u(b; γ)). (10.60)

Again, the quantity ∂u(b;s)
∂s involved in (10.59) can be obtained from the value

of ξ(b) where ξ(x) solves the variational equation

dξ

dx
=

∂f(x, u)

∂u
ξ (10.61)

ξ(a) = I. (10.62)

One nice feature of the homotopy method is that if it works then it provides
a globally convergent method.

10.4 Finite Difference Method

Consider a general 1-dimensional differential equation with the Dirichlet bound-
ary conditions:

y′′ = f(x, y) (10.63)

y(a) = α (10.64)

y(b) = β (10.65)
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over the interval [a, b]. Let xi := a+ih, i = 0, 1, . . . , n denote a uniformly spaced
partition of [a, b] with h := (b− a)/n. Let yi denote an approximation to y(xi.
Suppose we approximate the second-order derivative by the finite difference

y′′(xi) ≈
yi+1 − 2yi + yi−1

h2
. (10.66)

Then the differential equation over the interval can be discretized into the system

−yi−1 + 2yi − yi+1 + h2f(xi, yi) = 0, i = 1, . . . , n− 1. (10.67)

Together with the boundary conditions, we may rewrite the BVP in the matrix
form:⎡
⎢⎢⎢⎢⎢⎢⎢⎣

2 −1 0 . . . 0
−1 2 −1 0

. . .
. . .

. . .

2 −1
−1 2

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

y1
y2
...

yn−2

yn−1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
+h2

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

f(x1, y1)
f(x2, y2)

...

f(xn−2, yn−2)
f(xn−1, yn−1)

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

α
0
...

0
β

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
.

(10.68)
Depending upon the function f(x, y), the system (10.68) might be linear or

non-linear. Obviously, the step size h must be smaller when higher accuracy
is required for the solution of the BVP, which results in a larger (but often
structured) algebraic system (10.68).

One may consider to replace (10.63) by a more general finite difference
scheme:

akyn+k + . . .+ a0yn − h2{bkfn+k + . . .+ b0fn} = 0 (10.69)

where ai, bi are some suitably selected coefficients. In doing so, however, one
concern is that (10.69) may involve values of yj which are not available if k is
too large. In practice, one usually considers only a 3-term scheme

−yi−1 + 2yi − yi+1 + h2{b0fi−1 + b1fi + bi+1fi+1} = 0 (10.70)

such as

−yi−1 + 2yi − yi+1 +h2fi = 0 (order = 2) (10.71)

−yi−1 + 2yi − yi+1 +h2

{ fi−1 + 10fi + fi+1} = 0 (order = 4). (10.72)

Similar to (10.68), (10.70) can be rewritten in the form

JY + h2BF (Y ) = A (10.73)

where J is the same tridiagonal matrix as in (10.68),

B :=

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

b1 b2 0 . . . 0
b0 b1 b2 0

. . .
. . .

. . .

b1 b2
b0 b1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
,



10.5. FINITE ELEMENT METHODS 9

Y := [y1, . . . , yn−1]
T , F (Y ) := [f(x1, y1), . . . , f(xn−1, yn−1)]

T , and A = [α −
b0h

2f(x0, α), 0, . . . , 0, β−b2h
2f(xn, β)]

T . To solve (10.73) by the Newton method,
one needs to calculate the Jacobian of the left-hand side of (10.73) which is easily
seen to be

J + h2Bdiag{f ′(x1, y1), . . . , f
′(xn−1, yn−1)} (10.74)

where f ′ means ∂f
∂y . Thus the resulting linear system is a tridiagonal matrix

which can be solved much easier than expected.
The above discussion can be generalized to system of differential equations

and can be customized for more general boundary conditions.

10.5 Finite Element Methods

In this section we shall explore the basic ideas of the finite element method by
studying its application to the 1-dimensional linear BVP:

−u′′ = f(x)− ku(x) (10.75)

u(0) = 0 (10.76)

u(1) = 1 (10.77)

where u(x) stands for the transverse deflection of a taut string, fixed at its
ends, under an applied transverse, distributed load f(x). The total energy at
the current deflected state is half as much as

J(u) :=

∫ 1

0

(u′)2dx+

∫ 1

0

ku2dx− 2

∫ 1

0

fudx. (10.78)

The first term represents the strain energy of the string (= (u′)2

2 .) The second

term represents the energy stored in the string (= −
∫ u

0
(−ky)dy = ku2

2 .) The
third term represents the work done by the load f to take string from its original

configuration to its current deflected state (
∫ 1

0
fudx.) As a rule of the nature

(The Principle of Least Action,) the minimizer of J should be the solution to
the BVP (10.75). Indeed, we can prove the following theorem.

Theorem 10.5.1 Let D := {u ∈ C2(0, 1)|u(0) = u(1) = 0} denote the set of
admissible functions. Then

1. Let u be a solution of the BVP (10.75). Then J(u) ≤ J(v) for all v ∈ D.

2. Let u minimize J among all v ∈ D. Then u is a classical solution to the
BVP (10.75).

(pf:) Define the operator

Au := −u′′ + ku. (10.79)

Then for any v ∈ D, we have

< Av, v >=

∫ 1

0

(−v′′ + kv)vdx =

∫ 1

0

[(v′)2 + kv2]dx. (10.80)
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Hence we may rewrite

J(v) =< Av, v > −2 < f, u > . (10.81)

For any given two elements v, w ∈ D, define h := v − w. Then we have

J(v)− j(w) = < A(w + h), w + h > − < Aw,w > −2 < f, h >

= 2 < Aw − f, h > + < Ah, h > . (10.82)

Suppose w is a solution of (10.75). Then < Aw− f, h >= 0. It is clear from
(10.80) that < Ah, h >≥ 0. We thus conclude that J(v) ≥ J(w).

Suppose now that w is a minimizer of J . Then from (10.82) we find that is
is necessary to have 2 < Aw − f, h > + < Ah, h >≥ 0 for every h ∈ D. Choose
h to be of the form h = εη for some η ∈ D. Then we observe that

2 < Aw − f, η > +ε < Aη, η >≥ 0 for ε > 0 (10.83)

2 < Aw − f, η > +ε < Aη, η >≤ 0 for ε < 0. (10.84)

This is possible only if < Aw − f, η >= 0 for every η ∈ D. It follows that
Aw = f .

Remark. The energy formulation (10.78) works only for the problem (10.75).
For general problem, it is not always possible how the energy integral should be
set up. In many cases, however, one may consider the so called weak formulation
directly without referring to tany physical meaning at all. In the above it turns
out that the energy formulation is equivalent to the weak formulation.

Motivated by the above discussion, for a general differential equation

Au = f (10.85)

where A stands for some linear differential operator, we attempt to find a solu-
tion u so that the equation

< Au, v >=< f, v > (10.86)

is true for all v from a certain set D of functions. The idea of a finite element
method is to limit v to a finite-dimensional subspace, say, D = span{e1, . . . , en},
and to consider a solution u∗ ∈ D of (10.86) as an approximaton to the true
solution u. Write

u∗ :=
n∑

j=1

cjej (10.87)

for a certain suitable coefficients cj . Then (10.86) suggests that cj can be
determined from the system

n∑
j=1

< Aej , ei >=< f, ei >, i = 1, . . . , n. (10.88)

The equation (10.88) is known as the Galerkin equation. A finite element
method, therefore, involves
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1. The section of basis elements {ej} and the characterization of the admis-
sible space D.

2. The calculation of < Aej , ei > and < f, ei >, which usually involves
numerical integrations. Such a process is called the assembling.

3. The solution of a large, sparse, and usually structured linear algebraic
equation.


