
Chapter 6

System of Nonlinear
Equations

Finding the zeros of a given function f , i.e., finding an argument x for which

f(x) = 0 (6.1)

where f : Rn → Rn, is a classical problem arising from many areas of applica-
tions. Except in linear problems, root-finding invariably proceeds by iteration —
starting from some approximate trial solution, a useful algorithm will improve
the solution until some predetermined convergence criterion is satisfied.

Unlike most of the iterative methods used for linear systems, having a good
first-guess for the solution of a nonlinear system usually is crucial in determining
the success of an iterative process. Such methods, among which the Newton-
Raphson method is the most celebrated, are called local methods.

Thus far, general–purposed global methods are not available. For special
classes of problem, such as solving systems of polynomials, important progress
has recently been made. The homotopy method, having connections with dif-
ferential equations, is one such approach.

Another difficulty often associated with solving nonlinear equations is the
detection of existence of one or multiple solutions. A nonlinear set of equations
may have no (real) solutions at all. Contrariwise, it may have more than one
solution. Ideally, one should resort to some other means, such as the degree
theory, to determine that theoretically a nonlinear equation does have a solu-
tion before numerically finding the approximate solution. Applying a numerical
method blindfold has the danger of being misled to a wrong answer even though
the method behaves nicely.

6.1 The Newton-Raphson Method

An iterative scheme for solving the system (6.1) generally takes the form

xk+1 = ρ(xk), k = 0, 1, . . . (6.2)
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where ρ : Rn → Rn is a fixed function and x0 ∈ Rn is a given starting value.
It is hoped that the sequence {xk} will converge to a point ξ as i → ∞. If this
is so, then ξ must be a fixed point of ρ. It is desirable that f(ξ) = 0. It is also
important to know how quickly the sequence {xk} converges.

Suppose the system (6.1) has a solution at ξ and suppose that f is suffi-
ciently smooth. Let xk be an approximation to ξ. Considering the Taylor series
expansion of f about xk, we have

f(x) = f(xk) + f ′(xk)(x− xk) + 0(‖x− xk‖2) (6.3)

where f ′ ∈ Rn×n denotes the Jacobian matrix of f . If, in particular, we take
x ∈ ξ, then

0 ≈ f(xk) + f ′(xk)(ξ − xk). (6.4)

From (6.4), we are motivated to think that the quantity

xk+1 := xk + sk (6.5)

where sk satisfies the linear system

f ′(xk)xk = −f(xk) (6.6)

should a better approximation to ξ then xk. In other words, if f ′ is nonsingular,
then we have derived a special iterative scheme (6.2) with

ρ(x) := x− f ′(x)−1f(x). (6.7)

This is the well-known Newton-Raphson method.
There are many ways to define a sensible iteration function ρ other than

(6.7). Besides numerous research papers, a classical reference on this topic is
the book “Iterative Solution of Nonlinear Equations in Several Variables” by
Ortega and Rheinboldt. An earlier book is “Iterative Methods for the Solution
of Equations” by Traub.

Definition 6.1.1 Let ρ : Rn → Rn be an iteration function. Let ξ be a fixed
point of ρ. The iterative scheme (6.1.1) defined by ρ is said to be a method of
order p if for all initial point x0 in a neighborhood N(ξ), the generated sequence
{xk} satisfies

‖xk+1 − ξ‖ ≤ C‖xk − ξ‖p (6.8)

for a certain constant C.

The Newton method is best knwon for its quadratic convergence. Toward
this, we first prove a useful lemma.

Lemma 6.1.1 Let f : Rn → Rn be continuously differentiable in an open con-
vex set D ⊂ Rn. Suppose a constant γ exists such that ‖f ′(x)−f ′(y)‖ ≤ γ‖x−y‖
for all x, y ∈ D. Then ‖f(x)− f(y)− f ′(y)(x− y)‖ ≤ γ

2 ‖x− y‖2.
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(pf): By the line integration, f(x)− f(y) =
∫ 1

0
f ′(y + t(x− y))(x− y)dt. So

f(x)− f(y)− f ′(y)(x− y) =

∫ 1

0

[f ′(y + t(x− y))− f ′(y)](x− y)dt.

It follows that

‖f(x)− f(y)− f ′(y)(x− y)‖

≤
∫ 1

0

‖f ′(y + t(x− y))− f ′(y)‖‖x− y‖dt

≤
∫ 1

0

γt‖x− y‖2dt = γ

2
‖x− y‖2.

Theorem 6.1.1 Let f : Rn → Rn be continuously differentiable in an open
convex set D ⊂ Rn. Assume that there exist ξ ∈ D and β, γ > 0 such that

(1) f(ξ) = 0,

(2) f ′(ξ)−1 exists,

(3) ‖f ′(ξ)−1‖ ≤ β, and

(4) ‖f ′(x)− f ′(y)‖ ≤ γ‖x− y‖ for x, y in a neighborhood of ξ.

Then there exists ε > 0 such that for every x0 ∈ N(ξ, ε), the sequence {xk}
define by (6.5) and (6.6) is well defined, converges to ξ and satisfies

‖xk+1 − ξ‖ ≤ βγ‖xk − ξ‖2. (6.9)

(pf): By continuity of f ′, choose ε ≤ min{γ, 1
2βγ } so that f ′(x) is nonsingular

for all x ∈ N(ξ, ε). For k = 0, we have already known ‖x0 − ξ‖ < ε. So

‖f ′(ξ)−1(f ′(x0)− f ′(ξ))‖ ≤ ‖f ′(ξ)−1‖‖f ′(x0)− f ′(ξ)‖

≤ βγ‖x0 − ξ‖ ≤ 1

2
.

By the Banach lemma (Theorem 2.1.1 in my note .4.14),

‖f ′(x0)
−1‖ = ‖[f ′(ξ) + (f ′(x0)− f ′(ξ))]−1‖

≤ ‖f ′(ξ)−1‖
1− ‖f ′(ξ)−1(f ′(x )− f ′(ξ))‖ ≤ 2‖f ′(ξ)−1‖ ≤ 2β.

Now x1 − ξ = x0 − ξ − f ′(x0)
−1f(x0) = x0 − ξ − f ′(x0)

−1(f(x0)− f(ξ)) =
f ′(x0)

−1[f(ξ)− f(x0)− f ′(x0)(ξ − x0)]. So

‖x1 − ξ‖ ≤ ‖f ′(x0)
−1‖‖f(ξ)− f(x0)− f ′(x0)(ξ − x0)‖

≤ 2β
γ

2
‖ξ − x0‖2 = βγ‖x0 − ξ‖2 (by Lemma 6.1.1)

≤ βγε‖x0 − ξ‖ ≤ 1

2
‖x0 − ξ‖ ≤ ε.
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The proof is now completed by induction.
Remarks. (1) The above theorem states that the Newton method converges
quadratically if f ′(ξ) is nonsingular and if starting point is close enough to ξ.

(2) At each step of the Newton method, an evaluation of the Jacobian matrix
f ′(xk) is required. Also, a linear system (6.1.5) needs to be solved. All of these
mean that the Newton method is an expensive method. So, modifications of
the Newton method to make it more efficient is essential in practice.

6.2 The Broyden Method

Consider that in one-dimensional case, the derivative f ′(xk) may be approxi-
mated by the finite difference quotient

Bk :=
f(xk)− f(xk−1)

xk − xk−1
. (6.10)

This choice results in the so called secant method:

xk+1 = xk −B−1
k f(xk) (6.11)

and it can be proved that the rate of convergence is p = 1+
√
5

2 ≈ 1.618. In
n-dimensional case, we reformulate the relationship (6.10) as

Bk(xk − xk−1) = f(xk)− f(xk−1) (6.12)

which is known as the quasi-Newton condition. If we further write

sk := xk+1 − xk (6.13)

Δfk := f(xk+1)− f(xk) (6.14)

Bk+1 = Bk + Ck, (6.15)

then (6.12) is equivalent to

Cksk = Δfk −Bksk. (6.16)

Let wk ∈ Rn be an arbitrary vector such that wT
k sk 	= 0. Then obviously the

matrix

Ck :=
1

wT
k sk

(Δfk −Bksk)w
T
k (6.17)

satisfies the quasi-Newton condition (6.16).

Definition 6.2.1 If wk := sk, then

Ck :=
1

sTk sk
(Δfk −Bksk)s

T
k (6.18)

is known as Broyden’s first method. If wk := BT
k sk, then

Ck :=
1

sTkBksk
(Δfk −Bksk)s

T
kBk (6.19)

is known as Broyden’s second method.
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Theorem 6.2.1 Let sk,Δfk ∈ Rn be given. The matrix Ck given by (6.18) is
the minimal change of Bk in the Frobenius norm such that Bk+1 = Bk + Ck

satisfies the quasi-Newton condition Bk+1sk = Δfk,.

(pf): Let C̃k denote another possible change of Bk such that B̃k+1 := Bk + C̃k

satisfies B̃k+1sk = Δfk. Then

‖Ck‖ = ‖Bk+1 −Bk‖F =
1

sTk sk
(Δfk −Bksk)s

T
k ‖F

= ‖ 1

sTk sk
(B̃k+1sk −Bksk)s

T
k ‖

≤ ‖B̃k+1 −Bk‖F ‖
sks

T
k

sTk sk
‖F = ‖C̃k‖F .

Algorithm 6.2.1 (Broyden’s Method)
Given an initial guesst x0,
Approximate f ′(x0) by a matrix B0 (say, by a finite difference method),
For k = 0, 1, . . .
Solve Bkdk = +f(xk) for dk,
Determine λk for which ‖f(xk − λkdk)‖2 is approximately minimized,

xk+1 : = xk − λkdk,
sk : = xk+1 − xk,
Δfk : = f(xk+1)− f(xk),
Bk+1 : = Bk +

1
sT
k
sk
(Δfk −Bksk)s

T
k .

Lemma 6.2.1 Let f : Rn → Rn be continuously differentiable on an open
convex set D ⊂ Rn. Suppose there exists a constant γ exists such that ‖f ′(x)−
f ′(y)‖ ≤ γ‖x− y‖ for x, y ∈ D. Then it holds that for any x, y, ξ ∈ D, ‖f(x)−
f(y)− f ′(ξ)(u− v)‖ ≤ γ

2 (‖x− ξ‖+ ‖y − ξ‖)‖x− y‖.

(pf): The proof is parallel to that of (6.1.1). We have, by the line integral,

‖f(x)− f(y)− f ′(ξ)(x− y)‖ = ‖
∫ 1

0
[f ′(y+ t(x− y))− f ′(ξ)](x− y)dt‖ ≤ γ‖x−

y‖
∫ 1

0 ‖y + t(x− y)− ξ‖dt ≤ γ‖x− y‖
∫ 1

0 {t‖x− ξ‖+ (1− t)‖y − ξ}dt. ⊕

Lemma 6.2.2 Let f : Rn → Rn be continuously differentiable on an open
convex set D ⊂ Rn. Suppose there exists a constant γ exists such that ‖f ′(x)−
f ′(y)‖ ≤ γ‖x − y‖ for x, y ∈ D. Then for xk+1, xk ∈ D, holds that ‖Bk+1 −
f ′(ξ)‖ ≤ ‖Bk − f ′(ξ)‖+ γ

2 (‖xk+1 − ξ‖+ ‖xk − ξ‖).

(pf): By definition,

Bk+1 − f ′(ξ) = Bk − f ′(ξ) +
(Δfk −Bksk)s

T
k

sTk sk

= Bk

(
I =

sks
T
k

sTk sk

)
− f ′(ξ)

(
I − sks

T
k

sTk sk

)
+

(Δfk − f ′(ξ)sks
T
k

sTk sk
.
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Taking norm, we have

‖Bk+1 − f ′(ξ)‖ ≤ Bk − f ′(ξ)‖‖I − sks
T
k

sTk sk
‖+ ‖ (Δfk − f ′(ξ)sk)sTk

sTk sk
‖.

Observe that ‖I − sks
T
k

sT
k
sk
‖ ≤ 1. The third term is estimated by

‖ (Δfk − f ′(ξ)sk)sTk
sTk sk

‖ = ‖{[f(xk+1)− f(xk)− f ′(ξ)(xk+1 − xk)]}sTk
sTk sk

‖

≤ γ

2
(‖xk+1 − ξ‖+ ‖xk − ξ‖)

by the preceding lemma. ⊕

Theorem 6.2.2 Let f : Rn → Rn be continuously differentiable on an open
convex set D ⊂ Rn. Suppose there exists ξ ∈ Rn, β, γ > 0 such that

1. f(ξ) = 0,

2. f ′(ξ)−1 exists,

3. ‖f ′(ξ)−1‖ ≤ β, and

4. ‖f ′(x)− f ′(y)‖ ≤ γ‖x− y‖ for x, y in a neighborhood of ξ.

Then there exist positive constants δ1, δ2 such that if ‖x0 − ξ‖ < δ1 and ‖B0 −
f ′(ξ)‖ ≤ δ2, then the Broyden’s method is well defined, converges to ξ, and
satisfies

‖xk+1 − ξ‖ ≤ ck‖xk − ξ‖ (6.20)

with lim
k→∞

ck = 0. (This behavior is called superlinear convergence.)

(pf): Choose δ2 ≤ 1
6β and δ1 ≤ 2δ

5γ . Then ‖f ′(ξ)−1B0 − I‖ ≤ βδ2 ≤ 1
6 . By

the Banach lemma, B−1
0 exists. So x1 can be defined. Furthermore,

‖B−1
0 ‖ = ‖(f ′(ξ) + (B0 − f ′(ξ)))−1‖

≤ ‖f ′(ξ)−1‖
1− ‖f ′(ξ)−1‖‖B0 − f ′(ξ)‖ ≤ β

1− βδ2
. (6.21)

Thus

‖e1‖ := ‖x1 − ξ‖ = ‖x0 −B−1
0 (f(x0)− f(ξ))− ξ‖

= ‖ −B−1
0 [f(x0)− f(ξ)−B0(x0 − ξ)]‖

= ‖B−1
0 [f(x0)− f(ξ)− f ′(ξ)(x0 − ξ) + (f ′(ξ)−B0)(x0 − ξ)]‖

≤ β

1− βδ2

[γ
2
‖e0‖2 + δ2‖e0‖

]
≤ β

1− βδ2
[γ, voer2δ1 + δ2] ‖e0‖

≤ β

1− βδ2

6δ2
5

‖e0‖ ≤
1
6

1− 1
6

6

5
‖e0‖ <

1

2
‖e0‖.
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By (6.2.2), we know

‖B1 − f ′(ξ)‖ ≤ ‖B0 − f ′(ξ)‖+ γ

2
(‖x1 − ξ‖+ ‖x0 − ξ‖)

≤ δ2 +
γ

2

(
3

2
‖e0‖

)
≤ δ2

(
1 +

γ

2

3

2

2

5γ

)

=

(
1 +

3

10

)
δ2 ≤ 3

2
δ2.

Thus ‖f ′(ξ)−1B1 − I‖ ≤ 2βδ2 ≤ 1
3 . By the Banach lemma, B−1

1 exists and

‖B−1
1 ‖ ≤ ‖f ′(ξ)−1‖

1− ‖f ′(ξ)−1‖‖B1 − f ′(ξ)‖ ≤ β

1− 2βδ2
≤ 3

2
β. (6.22)

We can now estimate

‖e2‖ : = ‖x2 − ξ‖ = ‖x1 −B−1
1 (f(x1)− f(ξ))− ξ‖

= ‖ −B−1
1 [f(x1)− f(ξ)−B1e1]‖

= ‖B−1
1 [f(x1)− f(ξ)− f ′(ξ)e1 + (f ′(ξ) −B1)e1]‖

≤ 3β
2

[
γ
2 ‖e1‖2 +

3
2δ2‖e1‖

]
≤ 3β

2

[
γ
2
δ1
2 + 3

2δ2
]
‖e1‖

≤ 3βδ2
2

[
γ
2
1
2

2
5γ + 3

2

]
‖e1‖ ≤ 1

4
16
10‖e0‖ < 1

2‖e0‖.

Continuing, we see that

‖B2 − f ′(ξ)‖ ≤ B1 − f ′(ξ)‖+ γ

2
(‖e2‖+ ‖e1‖)

≤ 13

10
δ2 +

γ

2

(
3

2
‖e1‖

)
≤ δ2

(
1 +

3

10
+

γ

2

3

2

1

2

2

5γ

)

=

(
1 +

3

10
+

1

2

3

10

)
δ2 ≤

(
2−

(
1

2

)2
)
δ2 ≤ 2δ2.

The proof is now completed by induction.
Remark. In addition to saving functional evaluation of f ′(x), Broyden’s method
has another important advantage, that is, the matrix factorization of Bk+1 can
easily be updated.

For simplicity, we consider the basic form

B+ = Bc + uvT (6.23)

where u and v represent two column vectors in Rn. Suppose

Bc = QcRc (6.24)

is already known. We want to find the QR decomposition for B+. Assume

B+ = Q+R+. (6.25)
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Let w := QT
c u. Then B+ = Qc(Rc+wvT ). If the QR decomposition of Rc+wvT

is Q̃R̃, thenQ+R+ = (Q+Q̃)R̃ and we are done. But how to find Q̃R̃? The point
is that uvT is only a rank one matrix. So the QR decomposition of Rc + wvT

would be much cheaper if we perform the orthogonalization process carefully.
We first recall the 2-dimensional rotation matrix.

Definition 6.2.2 A 2-dimensional rotation matrix is a matrix R(θ) of the form

R(θ) =

[
cos θ, sin θ
− sin θ, cos θ

]
, (6.26)

or equivalently, a matrix R(α, β) of the form

R(α, β) =
1

√
α
2
+ β2

[
α, β
−β, α

]
. (6.27)

Definition 6.2.3 A Jacobi rotation matrix is a matrix J(s, t;α, β) ∈ Rn×n of

the form, for Δ :=
√
α
2
+ β2, α := α

Δ , β := β
Δ ,

J =

⎡
⎢⎢⎢⎢⎢⎢⎣

1 0 0
0 α 0 0 β 0
0 1
0 1
0 −β α 0

0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎦
.
→ s− throw
→ t− throw

(6.28)

Remarks. (1) It is easy to see that

J(s, t;α, β)

⎡
⎢⎢⎣

a1

an

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

a1
αas + βat
−βas + αat
an

⎤
⎥⎥⎦ . (6.29)

(2) Let v = [v1v2] be a 2-dimensional vector. Then R(θ)v rotates v by an angle

θ counterclockwise. Indeed, R(v1, v2)v =

[
‖v‖
0

]
and R(v2,−v1)v =.

Consider now the QR decomposition of the matrix Rc + wvT . Note that

wvT =

[
w1v

T

wnv
T

]
. Let c1 :=

√
w2

n−1 + w2
n. Then with Q̂1 := J(n−1, n;wn−1, wn)

we have Q̂1wv
T =

⎡
⎢⎢⎢⎢⎢⎣

w1v
T

...
wn−2v

T

c1v
T

0

⎤
⎥⎥⎥⎥⎥⎦. Let c2 :=

√
w2

n−2 + c21 and Q̂2 := J(n−2, n−
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1;wn−2, c1), we have Q̂1Q̂2wv
T =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

w1v
T

...
wn−3v

T

c2v
T

0
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
. Continuing this process for

n− 1 iterations, we obtain

Q̂n−1 . . . Q̂1(Rc + wvT ) = Q̂n−1 . . . Q̂1Rc +

⎡
⎢⎢⎢⎣

‖w‖vT
0
...
0

⎤
⎥⎥⎥⎦ . (6.30)

We note Q̂n−1 . . . Q̂1Rc to the worst is an upper Hessenberg matrix. So the
matrix Rc+wvT has been reduced by rotation matrices to an upper Hessenberg
matrix. We can now continue to do a sequence of plane rotations to change the
upper Hessenberg matrix into an upper triangular matrix (Recall how the QR
algorithm works!).

6.3 Sturm Sequences

The fundamental theorem of algebra asserts that a polynomial p(x) of degree
n,

p(x) = anx
n + an−1x

n−1 + . . .+ a1x+ a0, (6.31)

has exactly n (complex) roots, if counting multiplicity. If all the coefficients are
real numbers, it is often desirable to determine the number of real roots of p(x)
in a specified region (a, b) where either a or b may be infinite. Toward this end,
the concept of Sturm sequences offers a very useful technique here.

Definition 6.3.1 A sequence

p(x) = f1(x), . . . , fm(x) (6.32)

of real polynomials is called a Sturm sequence on an interval (a, b) if

1 The last polynomial fm(x) does not vanish in (a, b);

2 At any zero ξ of fk(x), k = 2, . . . ,m− 1, the two adjacent polynomials are
nonzero and have opposite signs, that is

fk−1(ξ)fk+!(ξ) < 0. (6.33)

Definition 6.3.2 Let {fk(x)} be a Sturm sequence on (a, b), and let x0 ∈ (a, b)
at which f1(x) 	= 0. We define V (x0) to be the number of changes of sign
of {fk(x0)}, zero values being ignored. If a is finite, then V (a) is defined as
V (a+ ε), where ε is such that no fk(x) vanishes in (a, a+ ε). If a = −∞, then
V (a) is defined to be the number of changes of signs of { lim

x→−∞
fk(x)}. Similarly,

V (b) is defined.
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Definition 6.3.3 Let R(x) be any rational function. The Cauchy index of R(x)
on (a, b), denoted by IbaR(x), is defined to be the difference between the number
of jumps of R(x) from −∞ to +∞ and the number of jumps from +∞ to −∞
as x goes from a to b, excluding the endpoints. That is, at every pole of R(x)
in (a, b) add 1 to the Cauchy index if R(x) → −∞ on the left of the pole and
R(x) → +∞ on the right of the pole, and subtract 1 if vice versa.

Theorem 6.3.1 (Sturm) If fk(x), k = 1, . . . ,m is a Sturm sequence on an
interval (a, b), then if neither f1(a) nor f1(b) equals 0, we have

Iba
f2(x)

f1(x)
= V (a)− V (b). (6.34)

(pf): we first claim that the value of V (x) does not change when x passes
through a zero of fk(x), k = 2, . . . ,m − 1. To see this, suppose fk(ξ) =
0. Then by (6.33), fk+!(ξ)fk−1(ξ) < 0. If fk(x) changes sign at x = ξ,
then for a sufficiently small perturbation h > 0, the signs of the polynomi-
als fk−1(x), fk(x) and fk+1(x) display the behavior in one of the following four

patterns:
−−− +++ −−− +++
−0+, −0+, +0−, +0− .
+++ −−− +++ −−−

In each case, V (ξ − h) = V (ξ) =

V (ξ+h). This is also true if fk(x) does not change sign at x = ξ. Thus V (x) can
change only when f1(x) goes through 0. If ξ is a zero of f1(x), it is not a zero of
f2(x) because of property 2 of Sturm sequences. Therefore, f2(x) has the same
sign on both sides of ξ. If ξ is a zero of f1(x) of even multiplicity, when V (x)
does not change as x increases through ξ and there is not contribution to the
Cauchy index. If the zero is of odd multiplicity, then V (x) will increase by 1 if

f1(x) and f2(x) have the same sign to the left of ξ, (i.e.,
−0+
−−− , or

+0−
+++

)

and will decrease by 1 if the signs to the left are different, (i.e.,
−0+
+++

, or

+0−
−−− ). Correspondingly for zeros of odd multiplicity, there is a -1 contribu-

tion to the Cauchy indes if the signs of f1(x) and f2(x) are the same to the left
of ξ and +1 contribution if they are different. This establishes the theorem. ⊕

We now apply the Sturm theorem to find the real roots of p(x) in an interval
(a, b). Consider the sequence of functions fk(x), k = 1, . . . ,m where

f1(x) = p(x)
f2(x) = p′(x)
fj−1(x) = qj−1(x)fj(x) − fj+1(x), j = 2, . . . ,m− 1
fm−1(x) = qm−1(x)fm(x)

(6.35)

where qj−1(x) is the quotient and fj+1(x) is the negative of the remainder
when fj−1(x) is divided by fj(x). Thus {fk(x)} is a sequence of polyno-
mials of decreasing degree which eventually must terminate in a polynomial
fm(x),m ≤ n+ 1, which divides fm−1(x) (why?). The polynomial fm(x) is the
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greatest common divisor of f1(x) and f2(x) and also of every other member of
the sequence (6.35). (This is the so called the Euclidean algorithm.)

Suppose fm(x) does not vanish in (a, b) so that the first condition of Defini-
tion 6.3.1 is satisfied. If fk(ξ) = 0 for any k, k = 2, . . . ,m − 1, then fk−1(ξ) =
−fk+1(ξ) by (6.35). Moreover, when fk+1(ξ) 	= 0 since otherwise fm(ξ) would
also be 0 (Why?). Thus the sequence {fk(x)} is a Sturm sequence when fm(x)
does not vanish in (a, b).

Suppose fm(x) is not of constant sign in (a, b), then we use the sequence
{fk(x)/fm(x)}. Then not only is this a Sturm sequence but also both sides of
(6.34) are the same for this sequence and for the sequence {fk(x)}. Therefore,
we can use these two sequences interchangeably in applying Sturm’s theorem.

Now for the sequence {fk(x)} define by (6.35), we write

f2(x)

f1(x)
=

p′(x)

p(x)
=

p∑
j=1

nj

x− aj
+R1(x) (6.36)

where the aj , j = 1, . . . , p, are the distinct real zeros of p(x), nj is the multiplicity
of the zeros aj , and R1(x) has no poles on the real axis. Since the nj are all
positive, Iba(p

′(x)/p(x)) is equal to the number of distinct real zeros of p(x) in
the interval (a, b). Therefore, we have the following theorem:

Theorem 6.3.2 The number of distinct real zeros of the polynomial p(x) in the
interval (a, b) is equal to V (a)− V (b) if neither f(a) nor f(b) is equal to 0.

Example. Consider the polynomial

p(x) = x6 + 4x5 + 4x4 − x24x− 4. (6.37)

Using (6.35), we calculate

f1(x) = x6 + 4x5 + 4x4 − x2 − 4x− 4

f2(x) = 6x5 + 20x4 + 16x3 − 2x− 4

f3(x) = 4x4 + 8x3 + 3x2 + 14x+ 16

f4(x) = x3 + 6x2 + 12x+ 8

f5(x) = −17x2 − 58x− 48

f6(x) = −x− 2

(6.38)

where the coefficients have been made integers by multiplying by suitable posi-
tive constants. For some sample values of x the signs of the fk(x) are:

−∞ ∞ 0 -1 +1 -24/17
f1(x) + + - 0 0 +
f2(x) - + - - + -
f3(x) + + + + + -
f4(x) - + + + + +
f5(x) - - - - - 0
f6(x) + - - - - -

# of sign change 4 1 2 2 1 3

(6.39)
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Thus we conclude there are three distinct real zeros, two negative and one posi-
tive. Moreover, there are two distinct zeros in (−∞,−1] and three in (−∞,+1].

6.4 Bairstow’s Method

A real polynomial may have complex conjugate roots. In order to find the
complex roots, most methods would have to begin at a complex starting point
and be carried out in complex arithmetic. Bairstow’s method avoids complex
arithmetic.

The roots of a quadratic polynomial

d(x) = x2 − rx− q (6.40)

are obviously known. For a polynomial p(x), we write

p(x) = p1(x)(x
2 − rx− q) +Ax+B. (6.41)

The coefficients of the remainder depends upon r and q. The idea of Bairstow’s
method is to determine r and q so that

A(r, q) = 0 (6.42)

B(r, q) = 0 (6.43)

Applying Newton’s method to (6.42), we need to compute

[
ri+1

qi+1

]
=

[
ri
qi

]
−
[

∂A
∂r

∂A
∂q

∂B
∂r

∂B
∂q

]−1

(ri,qi)

[
A(r1, qi)
B(r1, qi)

]
. (6.44)

Upon differentiating, we observe that

0 ≡ ∂p(x)

∂r
=

∂p1
∂r

(x)(x2 − rx− q)− p1(x)x+
∂A

∂r
x+

∂B

∂r
(6.45)

0 ≡ ∂p(x)

∂q
=

∂p1
∂q

(x)(x2 − rx− q)− p1(x) +
∂A

∂q
x+

∂B

∂q
. (6.46)

Let p1(x) be further divided by d(x) and denote

p1(x) = p2(x)(x
2 − rx− q) + Ãx+ B̃. (6.47)

Assuming the two roots x0 and x1, of d(x) are distinct, it follows that

p1(xi) = Ãxi + B̃. (6.48)

Substituting (6.46) we obtain

−xi(Ãxi + B̃) +
∂A

∂r
xi +

∂B

∂r
= 0 (6.49)

−(Ãxi + B̃) +
∂A

∂q
xi +

∂B

∂q
= 0. (6.50)
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Form the second equations we have (since x0 	= x1)

∂A

∂q
= Ã,

∂B

∂q
= B̃. (6.51)

Form the first equations, we have

−Ã(rxi + q) + xi(
∂A

∂r
− B̃) +

∂B

∂r
= 0. (6.52)

Therefore, we know

∂A

∂r
= B̃ = Ãr (6.53)

∂B

∂r
= Ãq. (6.54)

The values of A,B can be obtained without difficulty: Suppose

p(x) = anx
n + . . .+ a1x+ a0 (6.55)

p1(x) = bn−2x
n−2 + . . .+ b0. (6.56)

By comparing coefficients of (6.41), we obtain

bn−2 = an, (6.57)

bn−3 = bn−2r + an−1, (6.58)

bn−k = bn−k+2q + bn−k+1r + an−k+2 (6.59)

A = b1q + b0r + a1 (6.60)

B = b0q + a0. (6.61)

Similarly, by using (6.47), we can obtain the values of Ã and B̃.


