
Chapter 7

Approximation Theory

The primary aim of a general approximation is to represent non-arithmetic
quantities by arithmetic quantities so that the accuracy can be ascertained to
a desired degree. Secondly, we are also concerned with the amount of compu-
tation required to achieve this accuracy. These general notions are applicable
to functions f(x) as well as to functionals F (f) (A functional is a mapping
from the set of functions to the set of real or complex numbers). Typical ex-
amples of quantities to be approximated are transcendental functions, integrals
and derivatives of functions, and solutions of differential or algebraic equations.
Depending upon the nature to be approximated, different techniques are used
for different problems.

A complicated function f(x) usually is approximated by an easier function
of the form φ(x; a0, . . . , an) where a0, . . . , an are parameters to be determined
so as to characterize the best approximation of f . Depending on the sense in
which the approximation is realized, there are three types of approaches:

1. Interpolatory approximation: The parameters ai are chosen so that on a
fixed prescribed set of points xi, i = 0, 1, . . . , n, we have

φ(xi; a0, . . . , an) = f(xi) := fi. (7.1)

Sometimes, we even further require that, for each i, the first ri derivatives
of φ agree with those of f at xi.
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2. Least-square approximation: The parameters ai are chosen so as to

Minimize‖f(x)− ψ(x; a0, . . . , an)‖2. (7.2)

3. Min-Max approximation: the parameters ai are chosen so as to minimize

‖f(x)− φ(x; a0, . . . , an)‖∞. (7.3)

Definition 7.0.1 We say φ is a linear approximation of f if φ depends linearly
on the parameters ai, that is, if

φ(xi; a0, . . . , an) = a0ϕ0(x) + . . .+ anϕ(xn) (7.4)

where ϕi(x) are given and fixed functions.

Choosing ϕi(x) = xi, the approximating function φ becomes a polynomial.
In this case, the theory for all the above three types of approximation is well
established. The solution for the min-max approximation problem is the so
called Chebyshev polynomial. We state without proof two fundamental results
concerning the first two types of approximation:

Theorem 7.0.1 Let f(x) be a piecewise continuous function over the interval
[a, b]. Then for any ε > 0, there exist an integer n and numbers a0, . . . , an such

that
∫ b

a
{f(x)−

n∑
i=0

aix
i}2dx < ε.

Theorem 7.0.2 (Weierstrass Approximation Theorem) Let f(x) be a continu-
ous function on [a, b]. For any ε > 0, there exist an integer n and a polynomial
pn(x) of degree n such that max

x∈[a,b]
|f(x) − pn(x)| < ε. In fact, if [a, b] = [0, 1],

then the Bernstein polynomial

Bn(x) :=
n∑

k=0

(n
k

)
xk(1− x)n−kf(

k

n
) (7.5)

converges to f(x) as n→ ∞.

In this chapter, we shall consider only the interpolatory approximation.
Choosing ϕi(x) = xi, we have the so called polynomial interpolation; choos-
ing ϕi(x) = eix, we have the so called trigonometric interpolation. The so
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called rational interpolation where

ϕ(xi; a0, . . . , an, b0, . . . , bm) =
a0ϕ0(x) + . . .+ anϕn(x)

b0ϕ0(x) + . . .+ bmϕm(x)
(7.6)

is an important non-linear interpolation.

7.1 Lagrangian Interpolation Formula

Theorem 7.1.1 Let f ∈ C[a, b]. Let xi, i = 1, . . . , n, be n distinct points in
[a, b],. There exists a unique polynomial p(x) of degree ≤ n−1 such that p(xi) =
f(xi). In fact,

p(x) =
n∑

i=1

f(xi)�i(x) (7.7)

where

�i(x) :=
n∏

j=1

j �=1

x− xj
xi − xj

. (7.8)

In the case when f ∈ Cn[a, b], then

E(x) := f(x)− p(x) =

n∏
j=1

(x− xj)

n!
f (n)(ξ) (7.9)

where min{x1, . . . , xn, x} < ξ < max{x1, . . . , xn, x}.

(pf): Suppose p(x) =
n−1∑
k=0

akx
k where the coefficients ak are to be deter-

mined. Then p(xi) =
n−1∑
k=0

akx
k
i = f(xi), i = 1, . . . , n, can be written in the

form ⎡
⎢⎢⎣

1, x1, . . . , xn−1
1

1, xn, . . . , xn−1
n

⎤
⎥⎥⎦
⎡
⎢⎢⎣
a0

an−1

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣
f(x1)

f(xn)

⎤
⎥⎥⎦ . (7.10)

The matrix, known as the van Dermonde matrix, has determinant
∏
i>j

(xi −

xj). Since all xi’s are distinct, we can uniquely solve (7.10) for the unknowns
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a0, . . . , an−1. Note that each �i(x) is a polynomial of degree n− 1 and �i(xj) =
δij , the Kronecker delta notation. Therefore, by uniqueness, (7.7) is proved.
Let x0 ∈ [a, b] and x0 �= xi for any i = 1, . . . , n. Construct the Cn-function

F (x) = f(x)− p(x)− (f(x0)− p(x0))

n∏
i=1

(x− xi)

n∏
i=1

(x0 − xi)

.

It is easy to see that F (xi) = 0 for i = 0, . . . , n. By the Rolle’s theorem, there
exists ξ between x0, . . . , xn such that F (n)(ξ) = 0. It follows that

f (n)(ξ)− (f(x0)− p(x0))
n!

n∏
i=1

(x0 − xi)

= 0.

Thus E(x0) = f(x0) − p(x0) =

n∏
i=1

(x0 − xi)

n! f (n)(ξ). Since x0 is arbitrary, the
theorem is proved. ⊕

Definition 7.1.1 The polynomial p(x) defined by (7.7) is called the Lagrange
interpolation polynomial.

Remark. The evaluation of a polynomial p(x) = a0 + a1x + . . . + anx
n for

x = ξ may be done by the so called Horner scheme:

p(ξ) = (. . . ((anξ + an−1)ξ + an−2)ξ . . .+ a1)ξ + a0 (7.11)

which only takes n multiplications and n additions.

Remark. While theoretically important, Lagrange’s formula is, in general, not
efficient for applications. The efficiency is especially bad when new interpolating
points are added, since then the entire formula is changed. In contrast, Newton’s
interpolation formula, being equivalent to the Lagrange’s formula mathemati-
cally, is much more efficient.

Remark. Suppose polynomials are used to interpolate the function

f(x) =
1

1 + 25x2
(7.12)
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in the interval [−1, 1] at equally spaced points. Runge (1901) discovered that as
the degree n of the interpolating polynomial pn(x) tends toward infinity, pn(x)
diverges in the intervals .726 . . . ≤ |x| < 1 while pn(x) works pretty well in the
central portion of the interval.

7.2 Newton’s Interpolation Formula

Interpolating a function by a very high degree polynomial is not advisable in
practice. One reason is because we have seen the danger of evaluating high de-
gree polynomials (e.g. the Wilkinson’s polynomial and the Runge’s function).
Another reason is because local interpolation (as opposed to global interpola-
tion) usually is sufficient for approximation.

One usually starts to interpolate a function over a smaller sets of support
points. If this approximation is not enough, one then updates the current in-
terpolating polynomial by adding in more support points. Unfortunately, each
time the data set is changed Lagrange’s formula must be entirely recomputed.
For this reason, Newton’s interpolating formula is preferred to Lagrange’s in-
terpolation formula.

Let Pi0i1...ik(x) represent the k-th degree polynomial for which

Pi0i1...ik(xij ) = f(xij ) (7.13)

for j = 0, . . . , k.

Theorem 7.2.1 The recursion formula

pi0i1...ik(x) =
(x− xi0)Pi1...ik(x)− (x− xik)Pi0...ik−1

(x)

xik − xi0
(7.14)

holds.

(pf): Denote the right-hand side of (7.14) by R(x). Observe that R(x) is a
polynomial of degree ≤ k. By definition, it is easy to see that R(xij ) = f(xij )
for all j = 0, . . . , k. That is, R(x) interpolates the same set of data as does the
polynomial Pi0i1...ik(x). By Theorem 7.1.1 the assertion is proved. ⊕
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The difference Pi0i1...ik(x)−Pi0i1...ik−1
(x) is a k-th degree polynomial which

vanishes at xij for j = 0, . . . , k − 1. Thus we may write

Pi0i1...ik(x) = Pi0i1...ik−1
(x) + fi0...ik(x− xi0)(x− xi1) . . . (x− xik−1

). (7.15)

The leading coefficients fi0...ik can be determined recursively from the formula
(7.14), i.e.,

fi0...ik =
fi1...ik − fi0...ik−1

xik − xi0
(7.16)

where fi1...ik and fi0...ik−1
are the leading coefficients of the polynomials Pi1...ik(x)

and Pi0...ik−1
(x), respectively.

Remark. Note that the formula (7.16) starts from fi0 = f(xi0).

Remark. The polynomial Pi0...ik(x) is uniquely determined by the set of sup-
port data {(xij , fij )}. The polynomial is invariant to any permutation of the
indices i0, . . . , ik. Therefore, the divided differences (7.16) are invariant to per-
mutation of the indices.

Definition 7.2.1 Let x0, . . . , xk be support arguments (but not necessarily in
any order) over the interval [a, b]. We define the Newton’s divided difference as
follows:

f [x0] : = f(x0) (7.17)

f [x0, x1] : =
f [x1]− f [x0]

x1 − x0
(7.18)

f [x0, . . . , xk] : =
f [x1, . . . , xk]− f [x0, . . . , xk−1]

xk − x0
(7.19)

It follows that the k-th degree polynomial that interpolates the set of support
data {(xi, fi)|i = 0, . . . , k} is given by

Px0...xk
(x) = f [x0] + f [x0, x1](x− x0) (7.20)

+ . . .+ f [x0, . . . , xk](x− x0)(x− x1) . . . (x− xk−1).
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7.3 Osculatory Interpolation

Given {xi}, i = 1, . . . k and values a
(0)
i , . . . , a

(ri)
i where ri are nonnegative inte-

gers. We want to construct a polynomial P (x) such that

P (j)(xi) = a
(j)
i (7.21)

for i = 1, . . . , k and j = 0, . . . , ri. Such a polynomial is said to be an osculatory

interpolating polynomial of a function f if a
(j)
i = f (j)(xi) . . .

Remark. The degree of P (x) is at most
k∑

i=1

(ri + 1)− 1.

Theorem 7.3.1 Given the nodes {xi}, i = 1, . . . , k and values {a(j)i }, j = 0, . . . , ri,
there exists a unique polynomial satisfying (7.21).

(pf): For i = 1, . . . , k, denote

qi(x) = c
(0)
i + c

(1)
i (x− xi) + . . .+ c

(ri)
i (x− xi)

ri (7.22)

P (x) = q1(x) + (x− x1)
r1+1q2(x) + . . . (7.23)

+ (x− x1)
r1+1(x− x2)

r2+1 . . . (x− xk−1)
rk−1+1qk(x).

Then P (x) is of degree ≤
k∑

i=1

(ri + 1)− 1. Now P (j)(x1) = a
(j)
1 for j = 0, . . . , r1

implies a
(0)
1 = c

(0)
1 , . . . , a

(j)
1 = c

(j)
1 j!. So q1(x) is determined with c

(j)
1 =

a
(j)
1

j! .

Now we rewrite (7.23) as

R(x) :=
P (x)− q1(x)

(x− x1)r1+1
= q2(x) + (x− x2)

r2+1q3(x) + . . .

Note that R(j)(x2) are known for j = 0, . . . , r2 since P (j)(x2) are known. Thus

all c
(j)
2 , hence q2(x), may be determined. This procedure can be continued to

determine all qi(x). Suppose Q(x) = P1(x)− P2(x) where P1(x) and P2(x) are

two polynomials of the theorem. Then Q(x) is of degree ≤
k∑

i=1

(ri + 1) − 1,

and has zeros at xi with multiplicity ri + 1. Counting multiplicities, Q(x) has
k∑

i=1

(ri + 1) zeros. This is possible only if Q(x) ≡ 0.
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Examples. (1) Suppose k = 1, x1 = a, r1 = n− 1, then the polynomial (7.23)

becomes P (x) =
n−1∑
j=0

f (j)(a)
(x− a)j

j!
which is the Taylor’s polynomial of f at

x = x1.

(2) Suppose ri = 1 for all i = 1, . . . , k. That is, suppose values of f(xi) and
f ′(xi) are to be interpolated. Then the resultant (2k − 1)-degree polynomial
is called the Hermite interpolating polynomial. Recall that the (k − 1)-degree
polynomial

�i(x) =
k∏

j=1

j �=i

x− xj
xi − xj

(7.24)

has the property
�i(xj) = δij . (7.25)

Define

hi(x) = [1− 2(x− xi)�
′
i(xi)]�

2
i (x) (7.26)

gi(x) = (x− xi)�
2
i (x). (7.27)

Note that both hi(x) and gi(x) are of degree 2k − 1. Furthermore,

hi(xj) = δij ;

gi(xj) = 0; (7.28)

h′i(xj) = [1− 2(x− xi)�
′
i(xi)]2�i(x)�

′
i(x)− 2�′i(xi)�

2
i (x)|x=xj = 0;

g′i(xj) = (x− xi)2�i(x)�
′
i(x) + �2i (x)|x=xj = δij .

So the Hermite interpolating polynomial can be written down as

P (x) =
k∑

i=1

f(xi)hi(x) + f ′(xi)gi(x)). (7.29)

(3) Suppose ri = 0 for all i. Then the polynomial becomes P (x) = c1 + c2(x−
x1) + . . .+ ck(x− x1) . . . (x− xk−1) which is exactly the Newton’s formula.

7.4 Spline Interpolation

Thus far for a given function f of an interval [a, b], the interpolation has been
to construct a polynomial over the entire interval [a, b]. There are at least two
disadvantages for the global approximation:
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1. For better accuracy, we need to supply more support data. But then
the degree the resultant polynomial gets higher and such a polynomial is
difficult to work with.

2. Suppose f is not smooth enough. Then the error estimate of an high
degree polynomial is difficult to establish. In fact, it is not clear whether
or not that the accuracy will increase with increasing number of support
data.

As an alternative way of approximation, the spline interpolation is a local
approximation of a function f , which, nonetheless, yields global smooth curves
and is less likely to exhibit the large oscillation characteristic of high-degree
polynomials. (Ref: A Practical Guide to Splines, Springer-Verlga, 1978, by C.
de Boor).

We demonstrate the idea of cubic spline as follows.

Definition 7.4.1 Let the interval [a, b] be partitioned into a = x1 < x2 < . . . <
xn = b. A function p(x) is said to be a cubic plite of f on the partition if

1. The restriction of p(x) on each subinterval [xi, xi+1], i = 1, . . . , n − 1 is a
cubic polynomial;

2. p(xi) = f(xi), i = 1, . . . , n;

3. p′(xi) and p′′(xi) are continuous at each xi, i = 2, . . . , n− 1.

Since there are n − 1 subintervals, condition (1) requires totally 4(n − 1)
coefficients to be determined. Condition (2) is equivalent to 2(n− 2) + 2 equa-
tions. Condition (3) is equivalent to (n− 2) + (n− 2) equations. Thus we still
need two more conditions to completely determine the cubic spline.

Definition 7.4.2 A cubic spline p(x) of f is said to be

1. A clamped spline if p′(x1) and p′(xn) are specified.

2. A natural spline if p′′(x1) = 0 and p′′(xn) = 0.

3. A periodic spline if p(x1) = p(xn), p
′(x1) = p′(xn) and p′′(x1) = p′′(xn).
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Denote Mi := p′′(xi), i = 1, . . . , n. Since p(x) is piecewise cubic and con-
tinuously differentiable, p′′(x) is piecewise linear and continuous on [a, b]. In
particular, over the interval [xi, xi+1], we have

p′′(x) =Mi
x− xi+1

xi − xi+1
+Mi+1

x− xi
xi+1 − xi

. (7.30)

Upon integrating p′′(x) twice, we obtain

p(x) =
(xi+1 − x)3Mi + (x− xi)

3Mi+1

6δi
+ ci(xi+1 − x) + di(x− xi) (7.31)

where δi := xi+1 − xi, and ci and di are integral constants. By setting p(xi) =
f(xi), p(xi+1) = f(xi+1), we get

ci =
f(xi)

δi
− δiMi

6
(7.32)

di =
f(xi+1)

δi
− δiMi+1

6
. (7.33)

Thus on [xi, xi+1],

p(x) =
(xi+1 − x)3Mi + (x− xi)

3Mi+1

6δi

+
(xi+1 − x)f(xi) + (x− xi)f(xi+1)

δi

−δi
6
[(xi+1 − x)Mi + (x− xi)Mi+1]. (7.34)

It only remains to determine Mi. We first use the continuity condition of p′(x)
at xi for i = 2, . . . , n− 1, that is,

lim
x→x−

i

p′(x) = lim
x→x+

i

p′(x). (7.35)

Thus

3δ2i−1Mi

6δi−1
+

f(xi)− f(xi−1)

δi−1
− δi−1(Mi −Mi−1)

6

=
−3δ2iMi

6δi
+

f(xi+1)− f(xi)

δi
− δi(Mi+1 −Mi)

6
, (7.36)

or equivalently,

δi−1

6
Mi−1 +

δi + δi−1

3
Mi +

δi
6
Mi+1

=
f(xi+1)− f(xi)

δi
− f(xi)− f(xi−1)

δi−1
. (7.37)
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Note that we have n − 2 equations in n unknowns. Suppose, for example, we
work with the clamped spline, that is,

p′(x1) = f ′(x1) (7.38)

p′(xn) = f ′(xn). (7.39)

Then we have

δ1
3
M1 +

δ1
6
M2 =

f(x2)− f(x1)

δ1
− f ′(x1) (7.40)

δn−1

6
Mn−1 +

δn−1

3
Mn = f ′(xn)−

f(xn)− f(xn−1)

δn−1
. (7.41)

In matrix form, we obtain a linear algebraic equation⎡
⎢⎢⎢⎢⎢⎢⎢⎣

δ1
3

δ1
6 0

δ1
6

δ1+δ2
3

δ2
6 0

0
. . .

. . .
. . .
δn−2

6
δn−2+δn−1

3
δn−1

6

0 δn−1

6
δn−1

3

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎣

M1

M2

...
Mn

⎤
⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎣

f(x2)−f(x1)
δ1

− f ′(x1)

vdots
f(xi+1)−f(xi)

δi
− f(xi)−f(xi−1)

δi−1

...

f ′(xn)− f(xn)−f(xn−1)
δn−1

⎤
⎥⎥⎥⎥⎥⎥⎦
.

We note that in (7.42) the coefficient matrix is real, symmetric, tridiagonal
and strictly diagonally dominant. Therefore, there is a unique solution for
Mi, i = 1, . . . , n.

7.5 Trigonometric Interpolation

For a given set of N support points (xk, fk), k = 0, . . . , N−1, we consider linear
interpolation of the following forms:

φ(x) =
a0
2

+
M∑
h=1

(ah coshx+ bh sinhx) (7.42)

φ(x) =
a0
2

+
M−1∑
h=1

(ah coshx+ bh sinhx) +
aM
2

cosMx, (7.43)
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depending upon whether N = 2M + 1 or N = 2M .

For simplicity, we shall consider equally spaced notes. Without loss of gen-
erality, we shall assume

xk =
2πk

N
, k = 0, . . . , N − 1.

Observe that

e−i(hxk) = e−i(2πhk/N) = ei2π(N−h)k/N = ei(N−h)xk .

Thus, we may write

coshxk =
eihxk + ei(N−h)xk

2
;

sinhxk =
eihxk − ei(N−h)xk

2i
. (7.44)

Upon substitution into (7.42) and (7.43), we obtain

φ(xk) =
a0
2

+
M∑
h=1

(ah
eihxk + ei(N−h)xk

2
+ bh

eihxk − ei(N−h)xk

2i
)

=
a0
2

+
M∑
h=1

(
ah − ibh

2
eihxk +

ah + ibh
2

ei(N−h)xk)

= β0 + β1e
ixk + . . .+ β2Me

i2Mxk , (7.45)

φ(xk) =
a0
2

+
M−1∑
h=1

(
ah − ibh

2
eihxk +

ah + ibh
2

ei(N−h)xk)

+
aM
2

eiMxk + ei(N−M)xk

2

= β0 + β1e
ixk + . . .+ β2M−1e

i(2M−1)xk , (7.46)

respectively. Thus instead of considering the trigonometric expressions φ(x), we
are motivated to consider the phase polynomial

p(x) := β0 + β1e
ix + . . .+ βN−1e

i(N−1)x, (7.47)

or equivalently, by setting ω := eix, the standard polynomial

P (ω) := β0 + β1ω + . . .+ βN−1ω
N−1. (7.48)

Denoting ωk := eixk , the interpolating condition becomes

P (ωk) = fk, k = 0, . . . , N − 1. (7.49)

Since all ωk are distinct, by Theorem 7.1.1, we know
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Theorem 7.5.1 For any support data (xk, fk), k = 0, . . . , N − 1 with xk =
2πk/N , there exists a unique phase polynomial p(x) of the form (7.47) such
that p(xk) = fk for k = 0, . . . , N − 1. In fact,

βj =
1

N

N−1∑
k=0

fk(ωk)
−j =

1

N

N−1∑
k=0

fk(e
ixk)−j . (7.50)

(pf): It only remains to show (7.50). Recall that ωk = eixk = ei
2πk
N . Thus

ωj
k = ωk

j and ω−j
k = ωj

k. Observe that ωN
j−h = 1. That is, ωj−h is a root of the

polynomial ωN − 1 = (ω− 1)
N−1∑
k=0

ωk. Thus it must be either ωj−h = 1 which is

the case j = h, or
N−1∑
k=0

ωk
j−h =

N−1∑
k=0

ωj−h
k =

N−1∑
k=0

ωj
kω

−h
k = 0. We may therefore

summarize that
N−1∑
k=0

ωj
kω

−h
k =

{
0, if j �= 0
N, if j = h.

(7.51)

Introducing ω(h) := (1, ωh
1 , . . . , ω

h
N−1)

T ∈ CN , we may rewrite (7.51) in terms
of the complex inner product

〈ω(j), ω(h)〉 =

⎧⎨
⎩

0, if j �= h
.

N, if j = h
(7.52)

That is, the vectors ω(0), . . . ω(N−1) form an orthogonal basis of CN . Denote
f := (f0, . . . , fN−1)

T .

Then the interpolating condition (7.49) can be written as⎡
⎢⎢⎢⎣

1 1 1

1 ω1 . . . ωN−1
1

...

1 ωN−1 ωN−1
N−1

⎤
⎥⎥⎥⎦
⎡
⎢⎢⎣
β0

βN−1

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣
f0

fN−1

⎤
⎥⎥⎦

or simply
β0ω

(0) + β1ω
(1) + . . .+ βN−1ω

(N−1) = f. (7.53)

By the orthogonality of ω(h), (7.50) follows.

Corollary 7.5.1 The trigonometric interpolation of the data set (xk, fk), k =
0, . . . , N − 1 with xk = 2πk/N is given by (7.42) or (7.43) with

ah =
2

N

N−1∑
k=0

fk coshxk (7.54)



14 CHAPTER 7. APPROXIMATION THEORY

bh =
2

N

N−1∑
k=0

fk sinhxk. (7.55)

Definition 7.5.1 Given the phase polynomial (7.47) and 0 ≤ s ≤ N , the s-
segment ps(x) is defined to be

ps(x) := β0 + β1e
ix + . . .+ βse

isx. (7.56)

Theorem 7.5.2 Let p(x) be the phase polynomial that interpolates a given set
of support data (xk, fk), k = 0, . . . , N−1 with xk = 2πk/N . Then the s-segment
ps(x) of p(x) minimizes the sum

S(q) =
N−1∑
k=0

|fk − q(xk)|2 (7.57)

over all phase polynomials q(x) = γ0 + γ1e
ix + . . .+ γse

isx.

(pf): Introducing the vectors ps := (ps(x0), . . . ps(xN−1))
T =

s∑
j=0

βjω
(j) and

q := (q(x0), . . . , q(xN−1))
T =

s∑
j=0

γjω
(j) in CN , we write S(q) = 〈f − q, f − q〉.

By theorem 7.5.1, we know βj =
1
N 〈f, w(j)〉. Thus for j ≤ s, we have

1

N
〈f − ps, w

(j)〉 = βj − βj = 0,

and hence

〈f − ps, ps − q〉 =
s∑

j=1

〈f − ps, (βj − γj)ω
(j)〉 = 0.

It follows that S(q) = 〈f − q, f − q〉 = 〈f − ps + ps − q〉 = 〈f − ps, f − ps〉 +
〈ps − q, ps − q〉 ≥ 〈f − ps, f − ps〉 = S(ps).

Remark. (7.5.2) states the important property that the truncated trigono-
metric interpolation polynomial p(x) produces the least-squares trigonometric
approximation ps(x) of all data.
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7.6 Fast Fourier Transform

Suppose that we have a series of sines and cosines which represent a given
function of [−L,L], say,

f(x) =
a0
2

+
∞∑
n=1

an cos
nπx

L
+ bn sin

nπx

L
. (7.58)

Using the facts that

∫ L

−L

cos
nπx

L
dx =

∫ L

−L

sin
nπx

L
dx = 0 (7.59)

∫ L

−L

cos
nπx

L
cos

mπx

L
dx =

{
0, if n �= m

L, if n = m
(7.60)

and ∫ L

−L

sin
nπx

L
cos

mπx

L
dx = 0, (7.61)

one can show that

an =
1

L

∫ L

−L

f(x) cos
nπx

L
dx, n = 0, 1, . . . (7.62)

bn =
1

L

∫ L

−L

f(x) sin
nπx

L
dx, n = 1, 2, . . . (7.63)

Definition 7.6.1 The series (7.58), with coefficients defined by (7.62) and
(7.63), is called the fourier series of f(x) on [−L,L].

Given a function f(x), its Fourier series does not necessarily converge to
f(x) at every x. In fact,

Theorem 7.6.1 Suppose f(x) is piecewise continuous on [−L,L]. Then (1) If

x0 ∈ (−L,L) and f ′(x+0 ) and f ′(x−0 ) both exist (where f ′(x±) := lim
h→0±

f(x0 + h)− f(x0)

h
),

then the Fourier series converges to
f(x+

0 )+f(x−
0 )

2 . (2) At −L or L, if f ′(−L+)

and f ′(L−) exist, then the Fourier series converges to f(−L+)+f(L−)
2 .
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Remark. Suppose that f(x) is defined on [0, L]. We may extend f(x) to become
an even function on [−L,L] (simply by defining f(x) := f(−x) for x ∈ [−L, 0]).
In this way, the Fourier coefficients for the extended function become

an =
2

L

∫ L

0

f(x) cos
nπx

L
dx (7.64)

bn ≡ 0.

Thus we are left with a pure cosine series

f(x) =
a0
2

+
∞∑
n=1

an cos
nπx

L
. (7.65)

Similarly, we may extend f(x) to become an odd function on [−L,L], in which
case we obtain a pure sine series

f(x) =
∞∑
n=1

bn sin
nπx

L
(7.66)

with

bn =
2

L

∫ L

0

f(x) sin
nπx

L
dx. (7.67)

Example.

1. If f(x) = |x|, −π ≤ x ≤ π, then

f(x) =
π

2
− 4

π
(cosx+

cos 3x

32
+

cos 5x

52
+ . . .).

2. If g(x) = x,−π ≤ x ≤ π, then

f(x) = 2(sinx− sin 2x

2
+

sin 3x

3
− sin 4x

4
+ . . .).

3. If

h(x) =

{
x(π − x), for 0 ≤ x ≤ π
x(π + x), for −π ≤ x ≤ 0

then

h(x) =
8

π
(sin x+

sin 3x

33
+

sin 5x

53
+ . . .).
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Remark. The relationship between the trigonometric interpolation and the
Fourier series of a function f(x) can easily be established. For demonstration
purpose, we assume f(x) is defined over [0, 2π]. Define g(y) = f(y + π) = f(x)
for y ∈ [−π, π]. Then a typical term in (7.58) for g(y) is an cosny with

an =
1

π

∫ π

−π

g(y) cos(ny)dy. (7.68)

Suppose we partition the interval [−π, π] into N equally spaced subinterval and
define yk = −π+ 2πk

N for k = 0, . . . , N − 1. Then the approximation to (7.68) is

an ≈ 2

N

N−1∑
k=0

g(yk) cos(nyk)

= (−1)n
2

N

N−1∑
k=0

f(
2πk

N
) cos

2πkn

N
:= ân. (7.69)

Now observe that

f(x) = g(y) =
a0
2

+
∞∑

n=1

an cosny + bn sinny

≈ a0
2

+
M∑
n=1

an cosny + bn sinny

≈ â0
2

+
M∑
n=1

ân cosn(x− π) + b̂n sinn(x− π).

Comparing (7.69) with (7.54), we realize that the trigonometric interpolation
polynomial converges to the Fourier series as N → ∞. Thus the trigonometric
interpolation can be interpreted as the Fourier analysis applied to discrete data.

Remark. The basis of the Fourier analysis method for smoothing data is as
follows: If we think of given numerical data as consisting of the true values of
a function with random errors superposed, the true functions being relatively
smooth and the superposed errors quite unsmooth, then the examples above sug-
gest a way of partially separating functions from error. Since the true function
is smooth, its Fourier coefficients will decrease quickly. But the unsmoothness
of the error suggests that its Fourier coefficients may decrease very slowly, if at
all. The combined series will consist almost entirely of error, therefore, beyond
a certain place. If we simply truncate the series at the right place, then we are
discarding mostly error (although there will be error contribution in the terms
retained).

Remark. Since truncation produces a least-squares approximation (See (7.5.2),
the fourier analysis method may be viewed as least-squares smoothing.
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We now derive the Fourier series in complex form.

Lemma 7.6.1 The functions ei
jπx
L and ei

kπx
L are orthogonal in the following

sense: ∫ L

−L

ei
jπx
L ei

kπx
L =

{
0 if k �= j
2L, if k = j

. (7.70)

Assume the Fourier series takes the form

f(x) =
∞∑

n=−∞
fne

inπx
L . (7.71)

Multiplying both sides of (7.71) by e−ikπx
L and integrating brings

∫ L

−L

f(x)e−i kπx
L dx =

∞∑
n=−∞

fn

∫ L

−L

ei
nπx
L ei

kπx
L dx. (7.72)

By the orthogonality property, it is therefore suggested that

fk =
1

2L

∫ L

−L

f(x)ei
kπx
L dx. (7.73)

Remark. The complex form (7.71) can be written as

∞∑
n=−∞

fne
inπx

L =
∞∑

n=−∞
fn(cos

nπx

L
+ i sin

nπx

L
)

= f0 +
∞∑

n=1

(fn + f−n) cos
nπx

L
+ i(fn − f−n) sin

nπx

L
. (7.74)

It is easy to see that f0 = a0

2 , fn + f−n = an and fn + f−n = bn. That is, the
series (7.71) is precisely the same as the series (7.58).

Remark. We consider the relation between the trigonometric interpolation
and the fourier series again. Let f(x) be a function defined on [0, 2π]. Then the
Fourier series of f may be written in the form

f(x) =
∞∑

n=−∞
fne

inx (7.75)
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where

fn =
1

2π

∫ 2π

0

f(x)e−inxdx. (7.76)

Consider the function g(x) of the form

g(x) =
�∑

j=−�

dje
ijx (7.77)

for x ∈ [0, 2π]. Suppose g(x) interpolates f(x) at x = xk = 2πn
N for k =

0, 1, . . . , N − 1. Multiplying both sides of (7.77) by e−inxk and sum over k, we
obtain

N−1∑
k=0

f(xk)e
−inxk =

N−1∑
k=0

�∑
j=−�

dje
ijxke−inxk (7.78)

=
�∑

j=−�

dj(
N−1∑
k=0

eijxke−inxk). (7.79)

We recall from (7.51) the orthogonality in the second summation of (7.74).
Therefore,

dn =
1

N

N−1∑
k=0

f(xk)e
−inxk (7.80)

for n = 0,±1, . . . ± �. Once, we see that (7.80) is a Trapezoidal approxi-
mation of the integral (7.76). The match between (7.49) and (7.80) is con-
spicuous except that the ranges of validity do not coincide. Consider the
case where N = 2� + 1. Then obviously βj = dj for j = 0, 1, . . . , �. But

βN+j =
1
N

N−1∑
k=0

f(xk)e
−i(N+j)xk =

1

N

N−1∑
k=0

f(xk)e
−ijxk = dj for j = −1, . . . ,−�.

The central idea behind the fast Fourier transform (FFT) is that when N is
the product of integers, the numbers dj (or βj) prove to be closely interdepen-
dent. This interdependence can be exploited to substantially reduce the amount
of computation required to generated these numbers. We demonstrate the idea
as follows:

Suppose N = t1t2 where both t1 and t2 are integers. Let

j : = j1 + t1j2

n : = n2 + t2n1

for j1, n1 = 0, 1, . . . , t1 − 1 and j2, n2 = 0, 1, . . . , t2 − 1. Note that both j and n
run their required ranges 0 to N − 1. Let ω := e−i 2πN . Then ωN = 1. Thus

βj = βj1+t1j2 =
1

N

N−1∑
n=0

f(xn)e
−i 2πjn

N =
1

N

N−1∑
n=0

f(xn)ω
nj
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=
1

N

N−1∑
n=0

f(xn)ω
j1n2+j1t2n1+t1j2n2

=
1

N

t2−1∑
n2=0

(

t1−1∑
n1=0

f(xn2+t2n1)ω
j1t2n1)ωj1n2+t1j2n2 . (7.81)

The equation (7.81) can be arranged in a two-step algorithm:

F1(j1, n2) :=

t1−1∑
n1=0

f(xn2+t2n1)ω
j1t2n1 ; (7.82)

βj = F2(j1, j2) :=
1

N

t2−1∑
n2=0

F1(j1, n2)ω
j1n2+t1j2n2 . (7.83)

To compute F1 there are t1 terms to processed; to compute F2 there are t2.
The total is t1 + t2. This must be done for each (j1, n2) and (j1, j2) pair, or N
pairs. The final count is, thus, N(t1 + t2) terms processed. The original form
processed N terms for each j, a total of N2 terms. The gain in efficiency, if
measured by this standard, is thus t1+t2

N and depends very much on N . If, for
instance, N = 1000 = 10 × 100, then only 11% of the original 1000000 terms
are needed.

Example. Consider the case N = 6 = 2×3, xn = 2nπ
6 and the following discrete

data:
n 0 1 2 3 4 5

f(xn) 0 1 1 0 -1 -1
.

Then values of F1(j1, n2), according to (7.82), are given in the table

n2
0 1 2

0 0 0 0
j1

1 0 2 2

Values of F2(j1, j2), according to (7.84), are given by

j2
0 1 2

0 0 0 0
j1

1 2
√
3i 0 −2

√
3i
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Note that in programming language, the j2 loop is external to the j1 loop.

Suppose N = t1t2t3. Let

j = j1 + t1j2 + t1t2j3

n = n3 + t3n2 + t3t2n1.

Then in the nine power terms in ωnj, three will contain the product t1t2t3 and
hence may be neglected. The remaining six power terms may be grouped into
a three step algorithm:

F1(j1, n2, n3) :=

t1−1∑
n1=0

f(xn)ω
j1t3t2n1 (7.84)

F2(j1, j2, n3) :=

t2−1∑
n2=0

F (j1, n2, n3)ω
(j1+t1j2)t3n2 (7.85)

βj = F3(j1, j2, j3) :=
1

N

t3−1∑
n3=0

F2(j1, j2, n3)ω
(j1+t1j2+t1t2j3)n3 . (7.86)

We note that if N = 103, then only 3% of the original terms are needed.

7.7 Uniform Approximation

We have seen that the problem of approximating a continuous function by a
finite linear combination of given functions can be approached in various ways.
In this section, we want to use the maximal deviation of the approximation as
a measure of the quality of the approximation. That is, we want to consider
the normed linear space C[a, b] equipped with the sup-norm ‖ · ‖∞. We shall
limit out attention to approximate a continuous function by elements from the
subspace Pn−1 of all polynomials of degree ≤ n− 1. Since the error provides a
uniform bound on the deviation throughout the entire interval, we refer to the
result as a uniform approximation.

We first present a sufficient condition for checking if a given polynomial is a
best approximation.

Theorem 7.7.1 Let g ∈ Pn−1, f ∈ C[a, b] and ρ := ‖f − g‖∞. Suppose there
exist n+ 1 points a ≤ x1 < . . . < xn+1 ≤ b such that

|f(xν)− g(xν)| = ρ (7.87)
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f(xν+1)− g(xν+1) = −(f(xν)− g(xν)) (7.88)

for all ν. Then g is a best approximation of f .

(pf): Let

M := {x ∈ [a, b]||f(x)− g(x)| = ρ}. (7.89)

Certainly xν ∈M for all ν = 1, . . . , n+1. If g is not the best approximation, then
there exists a best approximation f̃ that can be written in the form f̃ = g + p
for some p ∈ Pn−1 and p is not identically zero. Observer that for all x ∈M we
have

|e(x)− p(x)| < |e(x)| (7.90)

where e(x) := f(x)− g(x). The inequality in (7.90) is possible if and only if the
sign of p(x) is the same as that of e(x). That is, we must have (f(x)−g(x))p(x) >
0 for all x ∈ M . By (7.88), it follows that the polynomial p must change signs
at least n times in [a, b]. That is, p must have at least n zeros. This contradict
with the assumption that p is not identically zero.

Remark. The above theorem asserts only that g is a best approximation when-
ever there are at least n+1 points satisfying (7.87) and (7.88). In general, there
can be more points where the maximal deviation is achieved.

Example. Suppose we want to approximate f(x) = sin 3x over the interval
[0, 2π]. It follows from the theorem that if n− 1 ≤ 4, then the polynomial g = 0
is a best approximation of f . Indeed, in this case the difference f − g alternates
between its maximal absolute value at six points, whereas the theorem only
requires n+ 1 points. On the other hand, for n− 1 = 5 we have n+ 1 = 7, and
g = 0 no longer satisfies conditions (7.87) and (7.88). In fact, in this case g = 0
is not a best approximation from P5.

Remark. The only property of Pn−1 we have used to establish Theorem 7.7.1
is a weaker form of the Fundamental Theorem of Algebra, i.e., any polynomial
of degree n− 1 has at most n− 1 distinct zeros in [a, b]. This property is in fact
shared by a larger class of functions.

Definition 7.7.1 Suppose that g1, . . . , gn ∈ C[a, b] are n linearly independent
functions such that every non-trivial element g ∈ U := span{g1, . . . , gn} has at
most n − 1 distinct zeros in [a,b]. Then we say that U is a Haar space. The
basis {g1, . . . , gn} of a Haar space is called a Chebyshev system.
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Remark. We have already seen that {1, x, x2, . . . , xn−1} forms a Chebyshev
system. Two other interesting examples are

1. {1, ex, e2x, . . . , e(n−1)x} over R .

2. {1, sinx, . . . , sinmx, cosx, . . . , cosmx} over [0, 2π].

We now state without proof the famous result that Theorem 7.7.1 is not
only sufficient but is also necessary for a polynomial g to a best approximation.
The following theorem is also known as the Alternation Theorem:

Theorem 7.7.2 The polynomial g ∈ Pn−1 is a best approximation of the func-
tion f ∈ [a, b] if and only if there exist points a ≤ x1 < . . . < xn+1 ≤ b such
that conditions (7.87) and (7.88) are satisfied.

Definition 7.7.2 The set of points {x1, . . . , xn+1} in Theorem 7.7.2 is referred
to as an alternant for f and g.

Corollary 7.7.1 For any f ∈ C[a, b], there is a unique best approximation.

Theorem 7.7.1 also provides a basis for designing a method for the compu-
tation of best approximations of continuous functions. The idea, known as the
exchange method of Remez, is as follows:

1. Initially select points such that a = x1 < . . . xn+1 = b.

2. Compute the coefficients of a polynomial p(x) := an−1x
n−1 + . . . a0 and a

number ρ so that
(f − p(0))(xν) = (−1)ν−1ρ. (7.91)

for all 1 ≤ ν ≤ n + 1. Note that the equations in (7.91) form a linear
system which is solvable.

The problem in step (2) is that even the property of alternating signs has
been satisfied in (7.91), it is not necessarily ture that ρ = ‖f − p‖∞. We
thus need to replace a new alternant.

3. Locate the extreme points in [a, b] of the absolute error function e(x) :=
f(x) − p(x). For the sake of simplicity, we assume that there are exactly
n+ 1 extreme points, including a and b.
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4. Replace {xk} by the new extreme points and repeat the sequence of steps
given above beginning with step (2).

The objective here is to have the set {xk} converge to a true alternant and
hence the polynomial converge to a best approximation. It can be proved that
the process does converge for any choice of starting values in step (1) for which
the value of ρ computed in step (2) in not zero. With additional assumptions on
the differentibility of f , it can also be shown that convergence is quadratic. Also
the assumption that e(x) possesses exactly n + 1 extrem points in step (3) is
not essential. For more details, refer to G. Meinardus’s book ”Approximation of
Functions: Theory and Numerical Methods”, Springer-Verlag, New York, 1967.


