
Chapter 8

Differentiation and
Integration

Given a function f(x), whether known as discrete data or as continuum

values, it is a classical problem to calculate the functionals f ′(x) or
∫ b

a f(x).
Except for a few simple functions, it is not always possible to obtain closed form
solutions. Therefore, numerical techniques for approximating these functions
becomes important in practice.

8.1 Numerical Differentiation

Suppose values of f(x) is known as continuum data, then the derivatives of f(x)
usually can be approximated by difference quotients. These formulas usually
can be derived from the Taylor series representation.
Example. Suppose f(x) has a Taylor’s polynomial expansion near the point

x = c. For instance, suppose f(c+h)=f(c)+f ′(c)h+ f ′′(c)
2 h2+ f ′′′(c)

6 h3+0(h4),

and f(c− h) = f(c)− f ′(c)h+ f ′′(c)
2 h2 − f ′′′(c)

6 h3 + 0(h4). Then

f ′(c) =
f(c+ h)− f(c)

h
+ 0(h), (8.1)

f ′(c) =
f(c+ h)− f(c− h)

2h
+ 0(h2), (8.2)

f ′(c) =
−3f(c) + 4f(c+ h)− f(c+ 2h)

2h
+ 0(h2), (8.3)

f ′′(c) =
f(c− h)− 2f(c) + f(c+ h)

h2
+ 0(h2). (8.4)

Remark. From the above finite difference formulas, it seems that the approx-
imation would become more and more accurate as h → 0. This observation
is true, however, only for exact arithmetic. In actually computation, there
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2 CHAPTER 8. DIFFERENTIATION AND INTEGRATION

is a lower bound on h beyond which no improvement on accuracy should be
expected. To understand this phenomenon, consider the central finite differ-
ence (8.2). Due to roundoff errors, we know f(c + h) = f̂(c + h) + E+ and

f(c − h) = f̂(c − h) + E− where f̂ represents the floating point value of f .

According to the formula, we are calculating f̂ ′(c) = f̂(c+h)−f̂(c−h)
2h . Thus

f ′(c)− f̂ ′(c) =
E+ −E−

2h
+ 0(h2). (8.5)

The second term in (8.5) is stable and converges to zero as h → 0. But the
first term becomes unbounded as h → 0, since the numerator E+ − E− is
approximately equal to the machine accuracy and is bounded away from zero.
Obviously using double precision in calculation can help to delay this from
happening too soon.

8.2 Richardson Extrapolation

The Richardson extrapolation technique is often used to improve the accuracy
from a set of already computed approximate solutions. The method works for
both numerical differentiation and numerical integration. The idea is as follows:

Let q denote the true quantity needed. Let N(q) denote the approximation
to q by a specific numerical scheme. Usually these quantities are related by the
equation:

N(q) = q + chm + 0(hn) (8.6)

where h is the stepsize used in the numerical scheme and n > m. Suppose we
have already used, respectively, two different stepsizes h = h1 and h = h2 (h1 >
h2) to obtain N(q)1 and N(q)2. Then

N(q)1 = q + chm
1 + 0(hn

1 ), (8.7)

N(q)2 = q + chm
2 + 0(hn

2 ). (8.8)

Let k := h1

h2
. Then it is easy to see that

kmN(q)2 −N(q)1 = (km − 1)q + 0(hn
2 ). (8.9)

Thus

M(q) :=
kmN(q)2 −N(q)1

km − 1
= q + 0(hn

2 ) (8.10)

is a higher order approximation to q.

8.3 Newton-Cotes Quadrature

Definition 8.3.1 Given a function f(x) defined on [a, b], a formula of the form

Qn(f) :=
n∑

i=1

αif(xi) (8.11)
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with αi ∈ R and xi ∈ [a, b] is called a quadrature rule for the integral I(f) :=∫ b

a
f(x)dx. The points xi are called the quadrature points (abscissas) and the

values αi are called the quadrature coefficients (weights). We also define the
quadrature error En(f) := I(f)−Qn(f).

Definition 8.3.2 A quadrature rule is said to have degree of precision m if
En(x

k) = 0 for k = 0, . . . ,m and En(x
m+1) �= 0.

Remark. If a quadrature rule has degree of precision m, then En(pk) = 0 for
all polynomials pk(x) of degree ≤ m.
Examples.(1) (Trapezoidal Rule) Suppose we approximate f(x) over [a, b] by
a segment joining points (a, f(a)) and (b, f(b)). Then

I(f) ≈ Q2(f) =
b− a

2
[f(a) + f(b)]. (8.12)

Since f(x)− p1(x) = (x− a)(x− b)f [a, b, x], it follows that

E2(f) =

∫ b

a

(x− a)(x− b)f [a, b, x]dx. (8.13)

Observe that (x − a)(s − b) does not change sign in [a, b]. By the mean value

theorem, i.e.
∫ b

a f(x)g(x)dx = f(ξ)
∫ b

a g(x)dx for some ξ ∈ [a, b] if g(x) is of one
sign over [a, b], we conclude that

E2(f) = f [a, b, ξ]

∫ b

a

(x− a)(x− b)dx

=
f (2)(η)

2

(b− a)3

6
= −f (2)(η)

12
(b− a)3. (8.14)

(2) (Simpson’s Rule) Suppose we approximate f(x) by a quadratic polynomial
p2(x) that interpolates f(a), f

(
a+b
2

)
and f(b). Then one can show that

Q3(f) =
b− a

6
[f(a) + 4f(

a+ b

2
) + f(b)]. (8.15)

The error obviously is given by

E3(f) =

∫ b

a

f [a, b,
a+ b

2
, x]ω(x)dx (8.16)

with ω(x) := (x − a)(x − b)(x − a+b
2 ). The function ω(x) changes sign as

x crosses a+b
2 . So we have to analyze E3(x) by a different approach. Let

Ω(x) :=
∫ x

a
ω(t)dt. Then Ω′(x) = ω(x). Thus by integration by parts, we

have E3(f) = f [a, b, a+b
2 , x]Ω(x)|ba − |baf [a, b, a+b

2 , x, x]Ω(x)dx. Observe that
Ω(a) = Ω(b) = 0. Observe also that Ω(x) > 0 for all x ∈ (a, b). Thus now we
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may apply the mean value theorem to conclude that

E3(f) = −
∫ b

a

f [a, b,
a+ b

2
, x, x]Ω(x)dx = −f [a, b,

a+ b

2
, ξ, ξ]

∫ b

a

Ω(x)dx

= −f (4)(η)

4!

4

15

(
b− a

2

)5

= −f (4)(η)

90

(
b− a

2

)5

. (8.17)

Remark. The degree of precision for Simpson’s rule is 3 rather than 2.
For a general integer n > 1, define h := b−a

n−1 , xi := a+ (i− 1)h, i = 1, . . . , n.
Let pn−1(x) be the Lagrangian interpolation polynomial of f(x) at nodes xi, i =
1, . . . , n. Then we may write

f(x) =
n∑

i=1

f(xi)�i(x) + f [x1, . . . , xn, x]
n∏

i=1

(x− xi). (8.18)

Thus we obtain a quadrature formula

I(f) =
n∑

i=1

αif(xi) +En(f) (8.19)

with quadrature coefficients

αi :=

∫ b

a

�i(x)dx (8.20)

and error

En(f) =

∫ b

a

f [x1, . . . , xn, x]
n∏

i=1

(x− xi)dx. (8.21)

In general, the function ωn(x) :=
∏n

i=1(x−xi) changes sign in the interval [a, b].
But it can be proved that

Theorem 8.3.1 (1) If n is odd and f ∈ Cn+1, then

En(f) =
f (n+1)(ξ)

(n+ 1)!

∫ b

a

xωn(x)dx. (8.22)

(2) If n is even and f ∈ Cn, then

En(f) =
f (n)(ξ)

n!

∫ b

a

ωn(x)dx. (8.23)

(pf): This is a homework problem.

Definition 8.3.3 The quadrature (8.19) obtained above is called a closed Newton-
Cotes formula.
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Remark. Consider the Runge’s function f(x) = 1
1+x2 defined over [−5, 5]. We

recall the fact that the interpolating polynomial using equally spaced nodes will
not yield good convergence as n → ∞. Consequently, we should not expect that
the closed Newton-Cotes formula will yield accurate results for the integral. For

instance, I(f) =
∫ 4

−4
1

1+x2 dx = 2 tan−1 4 ≈ 2.6516. But the closed Newton-
Cotes formula yields

n 3 5 7 9 11
Qn(f) 5.4902 2.2776 3.3288 1.9411 3.5956

For this reason, we

seldom use the Newton-Cotes formula for n > 5 in practice. Instead, we limit
n ≤ 5 and the so called composited rules.

Definition 8.3.4 In calculating the integral of a function f(x) over an interval
[a, b], we first divide [a, b] into a number of subintervals, and then apply the
Newton-Cotes formula with lower n to each subinterval, and then add the results.
Such a method is called a Composited Newton-Cotes formula.

Example. Suppose the interval [a, b] is divided into an even number, say 2m,
of subintervals. Let h = b−a

2m , xi = a+ ih, i = 0, 1, . . . , 2m. Then the composite
simpson’s rule takes the form

∫ b

a

f(x)dx =
h

3

{
f(a) + 2

m−1∑
i=1

f(x2i) + 4
m−1∑
i=0

f(x2i+1) + f(b)

}

− (b− a)

180
h4f (4)(ξ). (8.24)

Remark. Suppose f(xi) = yi+εi where yi is the floating point number approx-
imation to f(xi) and εi is the roundoff error. Upon substituting these values
into (8.24), we obtain

∫ b

a

f(x)dx =
h

3

{
y0 + 2

m−1∑
i=1

y2i + 4
m−1∑
i=0

y2i+1 + y2m

}

+
h

3

{
ε0 + 2

m−1∑
i=1

ε2i + f
m−1∑
i=0

ε2i+1 + ε2m

}
. (8.25)

Suppose |εi| ≤ ε. Then the error due to roundoff is bounded by h
3 6mε = (b−a)ε.

Thus, unlike the process of numerical differentiation, numerical integration using
composite rule is a stable process in the sense that the error due to roundoff is
independent of the stepsize h.

8.4 Gaussian Quadrature

The Newton-Cotes formula for the integral I(f) =
∫ b

a f(x)dx is based on the
integration of the polynomial p(x) that interpolates f(x) at a set of equally
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spaced nodes in [a, b]. Gaussian quadrature results from a different approach
in which both the abscissas xi and weights αi are to be determined so that the
quadrature

Qn(f) =
n∑

i=1

αif(xi) (8.26)

has a maximal degree of precision. Since there are 2n unknowns in (8.26), the
requirements

En(x
k) = 0, k = 0, 1, . . . , 2n− 1 (8.27)

supply 2n equations. Thus it is expected that the maximal degree of precision
is ≥ 2n− 1. The condition (8.27) is equivalent to

n∑
i=1

αix
k
i =

bk+1 − ak+1

k + 1
, k = 0, 1, . . . , 2n− 1 (8.28)

which is a nonlinear system. It is not clear whether (8.28) always has a solution
for arbitrary a and b. Neither is it clear whether the solution of (8.28) is real-
valued or not.

Theorem 8.4.1 A quadrature formula using n distinct abscissas results from
the integration of an interpolation polynomial if and only if the quadrature has
degree of precision ≥ n− 1.

(pf): (=⇒) This follows from Theorem 8.3.1.

(⇐=) Suppose the quadrature
n∑

i=1

αif(xi) has degree of precision ≥ n − 1.

Then
n∑

i=1

αix
k
i =

bk+1 − ak+1

k + 1
for k = 0, . . . , n− 1. We may rewrite this system

of equations as ⎡
⎢⎢⎣

1 1
x1 xn

xn−1
1 , . . . xn−1

n

⎤
⎥⎥⎦
⎡
⎢⎢⎣

α1

an

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

b− a

bn−an

n

⎤
⎥⎥⎦ . (8.29)

The coefficient matrix is the von de Morde matrix. Thus system (8.29) has a
unique solution for (αi). On the other hand, we can construct an interpolating
polynomial using the same nodes {xi}. This polynomial results in a quadrature

formula
n∑

i=1

βif(xi) which has degree of precision ≥ n−1. By setting En(x
k) =

0 for k = 0, . . . , n − 1, we end up with the same linear system (8.29). By
uniqueness, it must be that αi = βi. ⊕

By Theorem 8.4.1, the gaussian quadrature may be thought of as the inte-
gration of ascertain polynomial that interpolates f(x) at a certain set of nodes
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x1, . . . , xn. In this sense, we still find

En(f) =

∫ b

a

f [x1, . . . , xn, x]
n∏

i=1

(x− xi)dx. (8.30)

Not only En(x
k) = 0 for k = 0, . . . , n− 1, but we further would like to require

En(x
k) = 0 for k = n, . . . , n+ ν, and for ν as large as possible. There are two

approaches to accomplish this goal:

Lemma 8.4.1 If f(x) = xn+ν , ν ≥ 0, then the n-th divided difference f [x1, . . . , xn, x]
is a polynomial of degree at most ν.

(pf): When n = 1, we find f [x1, x] =
f(x1)−f(x)

x1−x =
x1+ν
1 −x1+ν

x1−x is obviously a
polynomial of degree ν. Suppose the assertion is true for n = k. Consider f(x) =
xk+1+ν . Then f [x2, . . . , xk+1, x], by induction hypothesis, is a polynomial of de-

gree at most ν + 1. Observe that f [x1, . . . , xk+1, x] =
f [x1,...,xk+1−f [x2,...,xk+1,x]

x1−x .
Note that the numerator has a zero at x = x1. Thus f [x1, . . . , xk+1, x] is a
polynomial of degree of most ν. The assertion now follows from the induction.
⊕

From (8.30) and Lemma 8.4.1, we see thatEn(f) = 0 for f(x) = xn, . . . , xn+ν

if and only if
∫ b

a xk

n∏
i+1

(x−xi)dx = 0 holds for k = 0, 1, . . . , ν. Thus we are seek-

ing {xi} so that ωn(x) :=
n∏

i=1

(x− xi) is perpendicular to functions 1, x, . . . , xν .

Since ω
(x)
n is a polynomial of degree n, we cannot have ν ≥ n; otherwise, the

polynomial ωn(x) would be perpendicular to itself. Is it then possible to have
ν = n− 1? The answer is positive.

Lemma 8.4.2 From the basic polynomials 1, x, x2, . . . and the inner product

< f, g >:=
∫ b

a
f(x)g(x)dx, we can generate a new basis of polynomials {φk(x)}

such that φk is of degree k, and < φi, φh >= 0 whenever i �= j. The φk’s are
unique up to constant multipliers.

(pf): The assertion follows from the standard Gram-Schmidt orthogonalization
process. ⊕

From the above discussion, we conclude that we may select the quadra-
ture coefficients {αi} and the nodes {xi} in the formula (8.26) such that the
quadrature has degree of precision 2n − 1. Such a formula is interpolating
the function f(x) at xi which are zeros of the n-th orthogonal polynomial,

that is, ωn(x) = cφn(x). In this case, αi =
∫ b

a �i(x)dx =
∫ b

a

n∏
j �=i

x− xj

xi − xj
dx =

1

φn(xi)

∫ b

a

φn(x)

x− xi
dx. This formula is called the gaussian quadrature formula.
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Remark. Without loss of generality, we may assume [a, b] = [−1, 1]. In this
case, the orthogonal polynomial are known as the Legendre’s polynomials and
are given by:

P0(x) = 1, (8.31)

P1(x) = x, (8.32)

P2(x) =
1

2
(3x2 − 1), (8.33)

Pk(x) =
1

2kk!

dk

dxk
(x2 − 1)k. (8.34)

The resulting quadrature is known as the Gauss-Legendre quadrature formula.

Theorem 8.4.2 All the n zeros of the orthogonal polynomial φn(x) are real-
valued, distinct, and contained in (a, b).

(pf): Let x1, . . . , xm ∈ (a, b) denote all the distinct, real zeros of φn(x) with

odd multiplicity. Assume m < n. Consider the integral
∫ b

a
(x − x1) . . . (x −

xm)φn(x)dx. Note that the integrand does not change sign over [a, b] and is
not identically zero. Thus the integral is positive. On the other hand, observe
that (x − x1) . . . (x − xm) is a polynomial of degree m < n. By orthogonality
of φn(x), the integral should be zero. This is a contradiction. Thus it must be
that m = n, and the multiplicity is 1.

We now consider another approach to the Gaussian quadrature. Recall the
Hermite interpolation formula for f(x) (Example 1 in Section 7.3):

f(x) =
n∑

i=1

hi(x)f(ai) +
n∑

i=1

gi(x)f
′(ai)

+
ω2
n(x)

(2n)!
f (2n)(ξ) (8.35)

where

hi(x) = [1− 2(x− ai)�
′
i(ai)]�

2
i (x) (8.36)

gi(x) = (x− ai)�
2
i (x) (8.37)

and �i(x) is the Lagrangian interpolation polynomial

�i(x) =
n∏

j=1

j �=i

x− aj
ai − aj

=
ωn(x)

(x− ai)ω′
n(ai)

(8.38)

and

ωn(x) =
n∏

i=1

(x− ai). (8.39)
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Remark. Recall that

�i(ak) = δik, i, k = 1, . . . , n. (8.40)

and the properties

hi(ak) = g′i(ak) = δik (8.41)

gi(ak) = h′
i(ak) = 0, i, k = 1, . . . , n. (8.42)

Remark. Since the Hermite interpolation polynomial interpolates f and f ′ at
n nodes, we know that the Hermite polynomial is exactly the same f if f is a
polynomial of degree 2n− 1 or less.

Integrating (8.35) over the interval [a, b], we get

∫ b

a

f(x)dx =
n∑

i=1

αif(ai) +
n∑

i=1

βif
′(ai) +En(f) (8.43)

where

αi =

∫ b

a

hi(x)dx (8.44)

βi =

∫ b

a

gi(x)dx (8.45)

En(f) =

∫ b

a

ω2
n(x)

(2n)!
f (2n)(ξ)dx. (8.46)

Note En(f) is automatically zero if f(x) is a polynomial of degree 2n−1 or less.
If we can choose the abscissas so that βj = 0, j = 1, . . . , n, then (8.43) will have
the form (8.26) with the desired degree of precision. That is,

βj = 0, j = 1, . . . , n, (8.47)

is a sufficient condition for the quadrature (8.26) to have degree of precision
2n − 1. The condition (8.47) is also necessary. This can be seen from letting
f(x) = gj(x) in (8.26). Since gj(x) is a polynomial of degree 2n−1, En(gj) = 0.
But also βj = I(gj) = Qn(gj) =

∑n
i=1 αigj(xi) = 0 because of the property

(8.41) and (8.42).
Using (8.37) and (8.45), we have

βj =

∫ b

a

(x− aj)�
2
j(x)dx =

∫ b

a

ωn(x)
�j(x)

ω′
n(aj)

dx. (8.48)

Since ωn(x) is a polynomial of degree n and �j(x) is a polynomial of degree
n− 1, a sufficient condition for βj = 0, j = 1, . . . , n, is that ωn(x) be orthogonal
to all polynomials of degree n− 1 or less over [a, b]. It can be proved that this
condition is also necessary. This is done by letting f(x) = ωn(x)un−1(x) in
(8.26) where un−1(x) is an arbitrary polynomial of degree n − 1 or less. Since
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(8.26) is exact for polynomials of degree 2n − 1 or less we have I(ωnun−1) =
n∑

i=1

αiωn(ai)un−1(ai) = 0, that is,

ωn⊥un−1. (8.49)

Remark. By now we have reached the same conclusion as the other approach
on the property of the function ωn(x). Assume [a, b] = [1,−1]. Then

ωn(x) =
2n(n!)2

(2n)!
Pn(x) (8.50)

where Pn(x) is the well-known Legendre polynomial defined by

P0(x) = 1 (8.51)

P1(x) = x (8.52)

Pk+1(x) =
2k + 1

k + 1
xPk(x) −

k

k + 1
Pk−1(x). (8.53)

We have seen from Theorem (8.4.2) that the zeros of the Legendre polyno-
mial of any degree are real, so this settles the question of the existence of real
abscissa. To find the weights we use (8.37) and (8.45) to get

αj =

∫ 1

−1

hj(x)dx =

∫ 1

−1

[1− 2(x− aj)�
′
j(aj)]�

2
j(x)dx

=

∫ 1

−1

�2j(x)dx− 2�′j(aj)

∫ 1

−1

(x− aj)�
2
j(x)dx

=

∫ 1

−1

�2j(x)dx (8.54)

since the second integral, which by definition is βj , is zero. From (8.54) it is
obvious that the wieghts are all positive. By considering (8.26) with f(x) =
�j(x), which is a ploynomial of degree n− 1, we have

∫ 1

−1

�j(x)dx =
n∑

i=1

αi�j(ai) = αj (8.55)

since �j(ai) = δji. Together (8.54) and (8.55) imply that

αj =

∫ 1

−1

�2j(x)dx =

∫ 1

−1

�j(x)dx. (8.56)

The following talbe shows the abscissas and weights for values of n of practical
interest.
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n Abscissas xj Weights αj

2 ±1/
√
3 1

3 ±
√
0.6 5/9

0 8/9

4 ±0.8611363116 0.3478548451

±0.3399810436 0.6521451549

5 ±0.9061798459 0.2369268850

±0.5384693101 0.4786286705

0 0.5688888889

6 ±0.9324695142 0.1713244924

±0.6612093865 0.3607615730

±0.2386191861 0.4679139346

To use Gauss quadrature to integrate f(x) over an arbitrary interval [a, b],
we simply map the ξ-interval [−1, 1] into the x-interval [a, b] using the linear
transformation

x = a+
b− a

2
(ξ + 1), dx =

b− a

2
dξ. (8.57)

Making this substitution in (8.26) gives∫ b

a

f(x)dx =

∫ 1

−1

f(a+
b− a

2
(ξ + 1))

b− a

2
dξ (8.58)

=
b− a

2

∫ 1

−1

f(a+
b− a

2
(ξ + 1))dξ (8.59)

≈ b− a

2

n∑
i=1

αif(xi) (8.60)

where αj are the tabulated gaussian weights associated with the tabulated gaus-
sian abscissa aj in [−1, 1], and xj is obtained from aj as follows:

xj = a+
b− a

2
(aj + 1), j = 1, . . . , n. (8.61)

8.5 Other gaussian Quadratures

Depending on the applications, sometimes it is necessary to integrate a function
f(x) with respect to a specified weight function w(x), i.e.,

Iw(f) :=

∫ b

a

w(x)f(x)dx (8.62)
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where w(x) ≥ 0 on [a, b]. In such a case, we consider a quadrature rule of the
form

Qw(f) :=
n∑

i=1

αif(xi). (8.63)

Note that the weight function w(x) does not appear on the right hand side of
(8.63). Using the same idea as discussed in the preceding section, it can be
proved that a sufficient and necessary condition for Qw(f) to have as high the
degree of precision as possible is that the nodes xi are the zeros of an orthogonal

polynomial with respect to w(x). That is, if ωn(x) :=
n∏

i=1

(x− xi), then

∫ b

a

w(x)un−1(x)ωn(x)dx = 0 (8.64)

for every polynomial un−1(x) of degree ≥ n − 1. In this case, the quadrature
coefficients are

αi :=

∫ b

a

w(x)�i(x)dx (8.65)

and the quadrature error is

Ew(f) =
f (2)(ξ)

(2n)!

∫ b

a

w(x)ω2
n(x)dx. (8.66)

Without repeating the arguments, we simply summarize below some of the well
known Gaussian formulas:

Weight function Interval Abscissas are Name of the special

w(x) [a, b] zeros of orthogonal polynomial

1 [−1, 1] Pn(x) Legendre

e−x [0,∞] Ln(x) Laguerre

e−x2

[−∞,∞] Hn(x) Hermite

(1− x)α(1 + x)β [−1, 1] Jn(x;α, β) Jacobi

1
(1−x2)1/2

[−1, 1] Tn(x) = cos(n cos−1 x) Chebyshev, 1-st kind

(1− x2)1/2 [−1, 1] Sn(x) =
sin((n+1) cos−1 x

sin(cos−1x) Chebyshev, 2-nd king

1√
x

[0, 1] P2n(
√
x

√
x [0, 1] 1√

s
P2n+1(

√
x)

( x
1−x)

1/2 [0, 1] 1√
x
T2n+1(

√
x)
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8.6 Adaptive Integration

Recall the equally-spaced composite Simpson’s rule

∫ b

a

f(x)dx =
h

3
{f(x0) + 2

m−1∑
i=1

f(x2i)

+4
m−1∑
i=0

f(x2i+1) + f(x2m)} − (b− a)

180
h4f (4)(ξ). (8.67)

Obviously, if f (4)(x) various greatly in magnitude, then the error term in (8.67)
might not be reasonable. In practice, we should not introduce more than what
is necessarily many nodes to save the overhead. But near points where f(x)
behaves badly we should place denser nodes to maintain the accuracy. For
these reasons, we introduce an adaptive integration method which performs a
local error estimation and introduce nodes according to the behavior of the
integrand.

Let a = a0 < a1 < . . . < an = b be a partition of [a, b] where

hi := ai+1 − ai (8.68)

generally are of different lengths but are of the form b−a
2r . Such an interval is said

to be of level r. Consider the two quadrature rules over the interval [ai, ai+1]:

R2[ai, ai+1](f) =
hi

12
{f(ai) + 4f(ai +

hi

4
)

+ 2f(ai +
hi

2
) + 4f(ai +

3hi

4
) + f(ai+1)} (8.69)

R1[ai, ai+1](f) =
hi

6
{f(ai) + 4f(ai +

hi

2
) + f(ai+1)} (8.70)

Suppose that the nodes a0, . . . , ai have already been determined so that

∫ ai

a

f(x)dx ≈
i∑

j=1

R2[aj−1, aj ](f) (8.71)

has already been accepted as an approximation. We want to consider the next
stepsize h at the level r. Observe from (8.67) that∫ α+h

α

f(x)dx−R1[α, α+ h](f) = − ĥ5

90
f (4)(ξ)

=
ĥ5

90
f (4)(α+

h

2
) +O(h6), (8.72)∫ α+h

α

f(x)dx−R2[α, α+ h](f) = − ĥ5

1440
f (4)(ξ)

= − ĥ5

1440
f (4)(α+

h

2
) + 0(h6) (8.73)
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with ĥ := h
2 . Thus

R2[α, α+ h](f)−R1[α, α+
h

2
](f) ≈ 15ĥ5

1440
f (4)(α + h) (8.74)

and ∫ α+h

α

f(x)dx−R2[α, α+ h](f) ≈ 1

15
(R2 −R1). (8.75)

In order that |
∫ ai+h

ai
f(x)dx−R2[ai, ai + h](f)| < ε

2r , we check to see if

|R2[ai, ai + h](f)−R1[ai, ai + h](f)| < 15ε

2r
. (8.76)

If (8.72) holds, we define ai+1 := ai + h, add R2[ai, ai+1](f) to the right hand
side of (8.66) to obtain an approximation of

∫ ai+1

a
f(x)dx, and go on to the next

subinterval. If (8.76) does not hold, we then consider the intervals [ai, ai +
h
2 ]

and [ai+
h
2 , ai+h] at the level r+1. All the previously computed values should

be saved for future use. The integration is stopped when a subinterval [an−1, b]
converges. A flowchart of the adaptive integration method is as follows:
Remark. The flowchart of adoptive integration method.


