
Chapter 9

Numerical Ordinary
Differential Equations -
Initial Value Problems

The problem to be considered in this chapter is to solve the initial value
problem (IVP):

dy

dx
= f(x, y)

y(x0) = y0 (9.1)

where f : R ×Rn → Rn satisfies the Lipschitz condition in y, i.e.,

‖f(x, y1)− f(x, y2)‖ ≤ L‖y1 − y2‖ (9.2)

for every y1, y2 ∈ Rn.
Remarks. (a) The Lipschitz condition is sufficient to prove that the IVP (9.1)
has a unique solution near x0.

(b) Any higher-order ordinary differential equation

dmy

dxm
= f

(
x, y,

dy

dx
, . . . ,

dm−1

dxm−1

)
(9.3)

can be reduced to a first-order system. This is done simply by letting

y1 := y, y2 :=
dy1
dx

, . . . , ym :=
dym−1

dx
(9.4)

and by considering the differential equation associated with (y1, . . . , ym)T .
Definition 9.0.1 Let x0 < x1 . . . be a sequence of points at which the solution
y(x) of (9.1) is approximated by the values y1, y1, . . .. Any numerical method
that computes yi+1 by using information at xi, xi−1, . . . ,
xi−k+1 is called a k-step method.
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2 Initial Value Problems

Example. The simplest 1-step method for solving (9.1) is the so called Euler
method

yn+1 = yn + hnf(xn, yn) (9.5)

where xn+1 = xn + hn and hn is the step size. Several questions are typical
topics in the numerical ODE theory — What is the global en := y(xn) − yn?
How is it constituted? How does it propagated? How does the step size affect
the error?

9.1 Linear Multi-step Methods

Definition 9.1.1 By a linear (p + 1)-step method of step size h, we mean a
numerical scheme of the form

yn+1 =

p∑
i=0

aiyn−i + h

p∑
i=−1

bifn−i (9.6)

where xk = x0 + kh, fn−i := f(xn−i, yn−i), and a
2
p + b2p �= 0. If b−1 = 0, then

the method is said to be explicit; otherwise, it is implicit.

Remark. In order to obtain yn+1 from an implicit method, usually it is neces-
sary to solve a nonlinear equation. Such a difficulty quite often is compensated
by other more desirable properties which are missing from explicit methods.
One such a desirable property is the stability.

Obviously, the choice of the coefficients ai and bi should not be arbitrary.
The choice is made with at least two concerns in mind:

(a) The truncation error made in each step should be as small as possible.
(b) The propagation of errors in overall steps should be as slow as possible.

Definition 9.1.2 The difference operator L associated with the linear (p+ 1)-
step method (9.6) is defined to be, with a−1 = −1,

L[y(x), h] :=

p∑
i=−1

aiy(x+ (p− i)h) + h

p∑
i=−1

biy
′(x+ (p− i)h). (9.7)

Definition 9.1.3 When applying the scheme (9.6) to an initial value problem
(9.1), we say the local truncation error at xn+1 is L[y(xn−p), h].

Remark. Assume yn−i = y(xn−i) for i = 0, . . . , p. Then

L[y(xn−p), h] = hb−1[f(xn+1, y(xn+1))− f(xn+1, yn+1)]

+ a−1(y(xn+1)− yn+1). (9.8)

Obviously, if the scheme is explicit, then

|L[y(xn−p+1), h]| = |y(xn+1)− yn+1| (9.9)
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indeed represents the error introduced by the scheme at the present step when
no errors occur in all previous steps. If the scheme is implicit, then, by the
mean value theorem,

|L[y(xn−p+1), h]| = |hb−1
∂f

∂y
(xn+1, ηn+1) + a−1| |y(xn+1)− yn+1|. (9.10)

Upon expanding the right hand side of (9.7) about x by the Taylor series
and collecting the like powers of h, we have

L[y(x), h] = c0y(x) + c1hy
(1)(x) + . . .+ cqh

qy(q)(x) + . . . (9.11)

where

c0 =

p∑
i=−1

ai, (9.12)

c1 =

p−1∑
i=−1

(p− i)ai +

p∑
i=−1

bi, (9.13)

cq =
1

q!

p−1∑
i=−1

(p− i)qai +
1

(q − 1)!

p−1∑
i=−1

(p− i)q−1bi, q ≥ 2. (9.14)

Definition 9.1.4 A linear multi-step method is said to be of order r if c0 =
c1 = . . . = cr = 0, but cr+1 �= 0 in the corresponding difference operator , i.e.,
If L[y(x), h] = cr+1y

(r+1)(η)hr+1.

Definition 9.1.5 A linear multi-step method is said to be consistent if and only
if its order r ≥ 1.

By integrating both sides of (9.1) from xn to xn+1, we obtain

y(xn+1)− y(xn) =

∫ xn+1

xn

f(x, y(x))dx. (9.15)

Suppose we have already known (xn, yn), (xn−1, yn−1), . . . , (xn−p, yn−p). We
may approximate f(x, y(x)) by a p-th degree interpolation polynomial pp(x).
In this way, we obtain an explicit scheme

yn+1 = yn +

∫ xn+1

xn

pp(x)dx = yn +

p∑
i=0

βpifn−i (9.16)

where bi are the quadrature coefficients. Such a method is called an Adams-
Bashforth method. Similarly, if we also include (xn+1, yn+1) in the data of
interpolation, then we end up with an implicit scheme

yn+1 = yn +

p∑
i=−1

βpifn−i (9.17)
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which is called an Adams-Moulton method.
Examples. (a) Some Adams-Bashforth methods:

0 1 2 3 4

β0i 1

2β1i 3 -1

12β2i 23 -16 5

24β3i 55 -59 37 -9

720β4i 1901 -2774 2616 -1274 251

(b) Some Adams-Moulton methods:
-1 0 1 2 3

β0i 1

2β1i 1 1

12β2i 5 8 -1

24β3i 9 19 -5 1

720β4i 251 646 -264 106 -19

9.2 Stability Theory of Multi-step Methods

Example. Suppose we want to apply the midpoint rule

yn+1 = yn−1 + 2hfn (9.18)

to the initial value problem

y′ = −y, y(0) = 1. (9.19)

The exact solution is y(x) = e−x. The numerical scheme will produce a finite
difference equation

yn+1 = yn−1 − 2hyn. (9.20)

To solve (9.20) we try a solution of the form

yn = rn. (9.21)

Then r is a zero of the polynomial r2 + 2hr − 1 = 0. Therefore, the general
solution of (9.20) is given by

yn = α1r
n
1 + α2r

n
2 (9.22)

with ri = −h ±
√
h2 + 1. Initial condition implies α1 + α2 = 1. We need one

more value y1 to start the scheme (9.18). Expressing α1 and α2 in terms of y1,
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we have

α1 =
r2 − y1
r2 − r1

=

√
h2 + 1 + h+ y1

2
√
h2 + 1

(9.23)

α2 =
r1 − y1
r1 − r2

=
−h+

√
h2 + 1− y1

2
√
h2 + 1

. (9.24)

We note that |r1| < 1 and |r2| > 1. Therefore, unless y1 is chosen such that
α2 = 0, yn grows unboundedly and, hence, deviated from the exact solution
regardless of the step size. Such a phenomenon is called numerical unstability.

Consider a general finite difference equation

p∑
i=−1

aiyn−i = φn (9.25)

where ai are constants independent of n, a−1 �= 0, ap �= 0, and n ≥ p+1. Given
starting values y0, . . . , yp, a solution of the difference equation is a sequence of
value {yn}∞p+1 that satisfies the equation (9.25) identically for all n = p+1, . . ..
The general solution of (9.25) can be written as yn = ŷn + ψn where ŷn is the
general solution of the homogeneous equation

p∑
i=−1

aiyn−1 = 0 (9.26)

and ψn is a particular solution of (9.25). To determine ŷn, we try ŷn = rn for
some appropriate r. Then we find r must be a root of the polynomial

P (r) :=

p∑
i=−1

air
p−i = a−1r

p+1 + a0r
p + . . .+ ap. (9.27)

Let the roots of P (r) be denoted by r0, r1, . . . , rp. Then
(a) Suppose all the roots of P (r) are distinct. Then rnj , j = 0, . . . , p are

linearly independent in the sense that

p∑
j=0

αjr
n
j = 0 for all n =⇒ αj = 0 for all j. (9.28)

Hence, the general solution ŷn of (9.26) is given by

ŷn =

p∑
j=0

αjr
n
j (9.29)

where αj are arbitrary constants to be determined by the starting values.
(b) Suppose some or all the roots of P (r) are repeated. For example, suppose

r0 = r1 = r2 and suppose the remaining roots are distance. Then it can be
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proved that rn0 , nr
n
1 , n(n − 1)rn2 , r

n
3 , . . . , r

n
p are linearly independent. In this

case, the general solution ŷn is given by

ŷn = α0r
n
0 + α1nr

n
1 + α2n

2rn2 +

p∑
j=3

αjr
n
j . (9.30)

Remark. We note that ŷn is bounded as n → ∞ if and only if all roots of
P (r) = 0 have modulus |rj | ≤ 1 and those with modulus 1 are simple.

Definition 9.2.1 The first and the second characteristic polynomials associated
with a linear multistep method

p∑
i=−1

aiyn−i + h

p∑
i=−1

bifn−i = 0, (9.31)

are defined, respectively, by

P1(r) :=

p∑
i=−1

air
p−i (9.32)

P2(r) :=

p∑
i=−1

bir
p−i. (9.33)

We say the method is zero-stable if and only if all roots of P1(r) have modulus
≤ 1 and those with modulus 1 are simple.

Remark. In a (p+1)-step method (9.31), totally there are 2p+3 undetermined
coefficients (a−1 = −1). Thus, it appears that we may choose these numbers so
that c0 = . . . = c2p+2 = 0. Indeed, such a choice is always possible. Therefore,
the maximal order for an implicit method is 2p+2. However, the maximal order
method is often useless because of the well known Dalquist barrier theorem:

Theorem 9.2.1 Any (p + 1)-step method (9.31) of order ≥ p + 3 is unstable.
More precisely, if p is odd, then the highest order of a stable method is p+ 3; if
p is even, then the highest order of a stable method is of order p+ 2.

Remark. The simpson’s rule is the best zero-stable 2-step method that attains
the optimal order 4.

We now apply the multistep method (9.31) to the text problem

y′ = λy (9.34)

where λ ∈ R is a fixed constant. Recall that the local truncation error Tn+1 at
xn+1 is defined by

Tn+1 :=

p∑
i=−1

aiy(xn−i) + h

p∑
i=−1

biλy(xn−i). (9.35)
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Due to the floating-point arithmetic, we often will introduce round-off errors in
applying the scheme (9.31). Suppose

Rn+1 =

p∑
i=−1

aiỹn−i + h

p∑
i=−1

bif(xn−i, ỹn−i). (9.36)

Then the global errors ẽn := y(xn)− ỹn−i satisfy the difference equation

p∑
i=−1

aiẽn−i + λh

p∑
i=−1

biẽn−i = Tn+1 −Rn+1. (9.37)

It is reasonable to assume that Tn+1 −Rn+1 ≈ φ ≡ constant. According to the
theory we develop earlier, a general solution of (9.37) would be

ẽn =

p∑
j=0

αjr
n
j +

φ

λh
∑p

i=−1 bi
, (9.38)

if we assume all roots r0, . . . , rp of the polynomial
∑p

ii=−1(ai + λhbi)r
p−i are

distinct.

Definition 9.2.2 Let h := λh. The polynomial

∏
(r, h) := P1(r) + hP2(r) =

p∑
i=−1

(ai + hbi)r
p−i (9.39)

is called the stability polynomial of the multistep method (9.31).

Definition 9.2.3 The linear multistep method (9.31) is said to be absolutely
stable for a given h if all roots rj of

∏
(r, h) satisfies |rj | < 1. The interval S is

called the interval of absolute stability if the method is absolutely stable for all
h ∈ S.

Remark. It can be proved that every consistent, zero-stable method is abso-
lutely unstable for small positive h.
Example. Consider the Simpson’s rule. Then P1(r) = −r2+1, P2(r) =

1
3 (r

2+

4r + 1),
∏
(r, h) =

(
h
3 − 1

)
r2 + 4

3hr +
(
1 + h

3

)
. The roots of

∏
(r, h) can be

checked to be

r1 = 1 + h+ 0(h−2) (9.40)

r2 = −1 +
1

3
h+ 0(h−2). (9.41)

Hence, if h > 0, then r1 > 0 and r2 > −1. If h < 0, then r1 < 1 and r2 < −1.
In other words, Simpson’s rule is no where absolutely stable.
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9.3 Predictor and Corrector Methods

A predictor-corrector (PC) method consists of an explicit method which is used
to make an initial guess of the solution and an implicit method which is used to
improve the accuracy of the solution. Generally, there are two ways to proceed
a PC method: One is to repeat the correction until a preassigned tolerance

‖y(s+1)
n+1 −y(s)n+1‖ < ε is achieved. But more often, the PECE method is preferred.

Definition 9.3.1 Let P stand for the predictor

p∗∑
i=−1

a∗i yn−i + h

p∗∑
i=0

b∗i fn−i = 0. (9.42)

Let C stand for the corrector

p∑
i=−1

aiyn−i + h

p∑
i=−1

bifn−i = 0. (9.43)

Let m be a fixed integer. Then by a P (EC)mE method we mean the following
scheme:

y
(0)
n+1 =

p∗∑
i=0

a∗i y
(m)
n−i + h

p∗∑
i=0

b∗i f
(m)
n−i, (9.44)

For s = 0, . . . ,m− 1, do (9.45)

f
(s)
n+1 = f(xn+1, y

(s)
n+1) (9.46)

y
(s+1)
n+1 =

p∑
i=−1

aiy
(m)
n−1 + h

p∑
i=0

bif
(m)
n−i + hb−1f

(s)
n+1 (9.47)

f
(m)
n+1 = f(xn+1, y

(m)
n+1). (9.48)

The selection of the pair of the predictor and the corrector should not be
arbitrary. Rather

Theorem 9.3.1 Let r∗ and r be the order of the predictor and the corrector,
respectively.

(1) If the correction to convergence is used and if r∗ ≥ r, then the principal
local truncation error of the PC method is that of the corrector alone. The
properties of the predictor is immaterial.

(2) If P (EC)m method is used and if r∗ = r − q, 0 ≤ q < r, then the local
truncation of the PC method is

(a) that of the corrector alone if m ≥ q + 1; or
(b) of the same order as the corrector (but the error constant is larger) is

m = q; or
(c) of the form 0(hr−q+m+1) if m ≤ q − 1.
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Remark. From the above theorem, we conclude that the predictor should not
be any better than the corrector. In practice, it is believed that the choice
r∗ = r with m = 1 is the best combination.

An important advantage of the PC method is the ease of estimating local
truncation errors. Suppose r∗ = r. Then under the local assumption, we know

y(xn+1) − y
(0)
n+1 = c∗r+1h

r+1y(r+1) + 0(hr+2) (9.49)

y(xn+1) − y
(m)
n+1 = cr+1h

r+1y(r+!) + 0(hr+2). (9.50)

It follows that

y
(m)
n+1 − y

(0)
n+1 = (c∗r+1 − cr+1)h

r+1y(r+1) + 0(hr+2). (9.51)

Therefore, the global error y(xn+1)− y
(m)
n+1 is estimated by

y(xn+1)− y
(m)
n+1 ≈ cr+1

c∗r+1 − cr+1

(
y
(m)
n+1 − y

(0)
n+1

)
. (9.52)

Such an estimate of error is called the Milne’s device. Note the right hand side
of (9.52) does not involve any high order derivative calculation. Note also the
local assumption is not realistic in practice. Thus the estimate should be used
with conservation.
Example. The following is a 4-th order Adams-Bashforth-Moulton pair;

yn+1 = yn + h
24 (55fn − 59fn−1 + 37fn−2 − 9fn−3) , Tn+1 ≈ 251

720h
5y(5)

yn+1 = yn + h
24 (9fn+1 + 19fn − 5fn−1 + fn−2) , Tn+1 ≈ − 19

720h
5y(5).

It can be shown, analogous to the preceding section, that the stability polyno-
mial for a P (Ec)mE method is given by

∏
P (EC)mE

(
r, h)− P1(r) + hP 2(r) +Mm(h)(P ∗

1 (r) + hP
∗
2(r)

)
(9.53)

where

Mm(h) =
(hb−1)

m(1− hb−1)

1− (hb−1)m
. (9.54)

With somewhat more complicated analysis, one can show that the PC method
is absolutely unstable for small h > 0.

9.4 Runge-Kutta Methods

We have seen that higher order of accuracy can be attained by appropriately
selected coefficients in a multistep methods. But the disadvantage is that a
multistep methods requires additional starting values. Runge-Kutta methods,
in contrast, preserves the one-step nature but sacrifices the linearity.
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Definition 9.4.1 An R-stage Runge-Kutta method generally is defined by

yn+1 = yn + hφ(xn, yn, h) (9.55)

where

φ(x, y, h) =
R∑

r=1

crkr, (9.56)

kr = f(x+ har, y + h
R∑

s=1

brsks), r = 1, . . . , R, (9.57)

ar =
R∑

s=1

brs. (9.58)

Such a method usually is represented by an array

a B
cT

(9.59)

where B = (brs), c
T = [c1, . . . , cR], a = [a1, . . . , aR]

T . If B is strictly lower
triangular, then the method is said to be explicit; otherwise, it is implicit.

Remark. Note an R-stage Runge-Kutta method involves R function evalua-
tions per step. Each of the functions kr, r = 1, . . . , R, may be interpreted as
approximation to the derivative y′(x) and the function φ as a weighted mean of
these approximations.
Remark. An important application of Runge-Kutta methods is to provide
additional starting values for a multistep predictor-corrector algorithm. If an
error estimator is available, then a Runge-Kutta method is easier to change the
step size than a multistep method.
Remark. Recall the initial value problem

y′ = f(x, y), y(xn) = y(xn). (9.60)

We can calculated the Taylor series

y(xn+1) = y(xn) + hy(1)(xn) +
h2

2!
y(2)(xn) + . . . (9.61)

Thus by defining

φT (x, y, h) := f(x, y) +
h

2!

df

dx
(x, y) + . . . (9.62)

we see that the Taylor algorithm of order p falls within the class (9.55).
If we choose values for the constants cr, ar, brs such that the expansion of the

function φ defined by (9.56) in powers of h differs from the expansion for φT (x, y)
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defined in (9.62) only in the p-th and higher powers of h, then the method clearly
has order p. Although there is a great deal of tedious manipulation involved in
deriving Runge-Kutta methods of higher order, some well known methods have
already been developed. It is quite often that given a specific order, there are a
2-parameter family of Runge-Kutta methods all of which have the same order
of accuracy.
Examples. Two fourth-order 4-stage explicit Runge-Kutta methods

0 0
1/2 1/2 0
1/2 0 1/2 0
1 0 0 1 0

1/6 2/6 2/6 1/6

(9.63)

0 0
1/3 1/3 0
2/3 -1/3 1 0
1 1 -1 1 0

1/8 3/8 3/8 1/8

(9.64)

Example. The unique 2-stage implicit Runge-Kutta method of order 4:

1/2 +
√
3/6 1/4 (1/4 +

√
3/6

1/2−
√
3/6 (1/4−

√
3/6 1/4

1/2 1/2

(9.65)

Example. A 3-stage semi-explicit Runge-kutta method or order 4:

0 0 0 0
1/2 1/4 1/4 0
1 0 1 0

1/6 4/6 1/6

(9.66)

Theorem 9.4.1 (Butcher’s attainable order theorem)
(a) Let P ∗(R) be the highest order that can be attained by an R-stage explicit

Runge-Kutta method. Then

R 1 2 3 4 5 6 7 8 9 ≥ 10
P ∗(R) 1 2 3 4 4 5 6 6 7 ≤ R− 2

. (9.67)

(b) For any R ≥ 2, there exists an R-stage implicit Runge-Kutta method of
order 2R.

We now consider the absolute stability property of Runge-Kutta methods.
We apply a Runge-Kutta method to the test problem y′ = λy. Define the global
error ẽn := y(xn)− ỹn, h := λh, k = [k1, . . . , kR]

T and E := [1, . . . , 1]T . We first
observe that

k = λeyn + hBk, (9.68)
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or equivalently,
k = λ(I − hB)−1eyn. (9.69)

Thus, analogous to (9.37), we have

ẽn+1 = ẽn + hc
T
(I − hB)−1eẽn (9.70)

+ (local error due to truncation and round-off) (9.71)

The Runge-Kutta method is said to be absolutely stable on the interval (α, β) if

r := 1 + hc
T
(I − hB

−1
e (9.72)

satisfies |r| < 1 whenever h ∈ (α, β). Note that, in contrast to the multistep
method, the stability of a Runge-Kutta method is determined by only one root.
In fact, it can be proved that

Theorem 9.4.2 For R = 1, 2, 3, 4, all R-stage explicit Runge-Kutta methods of
order R have the same interval of absolute stability. In each of these cases,

r = 1 + h+
1

2
h−2 + . . .+

1

R!
h−R. (9.73)



9.4. RUNGE-KUTTA METHODS 13

1

Examples.
Euler Rule Midpoint Rule Simpson’s Rule Trapezoial Rule

yn+1=yn+hfn yn+1=yn−1+2hfn yn+1=yn−1+
h
3 (fn−1+4fn+fn+1) yn+1=yn+

h
2 (fn+fn+1)

a−1 -1 -1 -1 -1

a0 1 0 0 0

a1 1 1 0

b−1 0 0 1/3 1/2

b0 1 2 4/3 0

b1 0 1/3 1/2

r 1 2 4 2

p+ 1 1 2 2 1

Figure 9.1: Examples of Multi-step Methods.


