
Chapter 1

Introduction

1.1 Preliminaries

In this note we concern ourselves with the numerical methods only for the first
order ordinary differential (ODE) system in the normal form

dy

dx
= f(x, y) (1.1)

where x ∈ R, y ∈ Rn and f : R × Rn −→ Rn. This discussion is adequate
because a general m-th order ODE

dmy

dxm
= f(x, y,

dy

dx
, . . . ,

dm−1y

dxm−1
) (1.2)

with x, y ∈ R can be reduced to the system (1.1) by defining

y1 := y

y2 :=
dy1

dx
=

dy

dx

y3 :=
dy2

dx
=

d2y

dx2
(1.3)

...

ym :=
dym−1

dx
=

dm−1y

dxm−1

and thus

d

dx




y1

...
ym−1

ym


 =




y2

...
ym

f(x, y1, . . . , ym−1)


 (1.4)

The system (1.1) may process infinitely many solutions. Each solution is call
an integral curve. In general we can pick out a particular solution by prescribing
certain additional conditions.
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Definition 1.1.1 The system (1.1) together with the initial condition

y(x0) = y0 (1.5)

is called an initial value problem (IVP).

Definition 1.1.2 The system (1.1) together with the boundary condition

g(y(a), y(b)) = 0) (1.6)

where a ≤ x ≤ b and g : Rn × Rn −→ Rn is called a two-point boundary value
problem.

Example. The IVP

dy

dx
= −

√
|1− y2|

y(0) = 1

has at least two solutions y(x) ≡ 1 and y(x) = cos x, and hence has infinitely
many solutions. For instance, the function

y(x) =




1 0 ≤ x ≤ α
cos x− α α ≤ x ≤ α + π
−1 α + π ≤ x

is a solution for any α.
A general criterion that guarantees the existence of a solution to an IVP is

the the following Cauchy-Peano Theorem.

Theorem 1.1.1 Suppose f(x, y) is continuous on an open set D ⊂ R × Rn

containing the initial point (x0, y0). Then the IVP has a solution so long as
(x, y(x)) ∈ D.

Definition 1.1.3 A function f(x, y) is said to satisfy a Lipschitz condition in
y with constant L in a region D ⊂ R×Rn if

‖f(x, u)− f(x, v)‖ ≤ L‖u− v‖ (1.7)

for all (x, u), (x, v) ∈ D.

Theorem 1.1.2 Suppose that f(x, y) and g(x, y) are continuous on an open
set D ∈ R×Rn and that f(x, y) satisfies a Lipschitz condition with constant L.
Suppose further that

‖f(x, y)− g(x, y)‖ ≤ ε

for all (x, y) ∈ D. If functions u(x) and v(x) satisfy, respectively, the systems

du

dx
= f(x, u)

dv

dx
= g(x, u)

for x ∈ [a, b], and (x, u(x)), (x, v(x)) ∈ D, then

‖u(x)− v(x)‖ ≤ {‖u(a)− v(a)‖+ (b− a)ε} eL(x−a). (1.8)
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Proof. By integration, we have

u(x) = u(a) +
∫ x

a

u′dt = u(a) +
∫ x

a

f(t, u(t))dt

and a similar expression for v(x). It follows that

u(x)− v(x) = u(a)− v(a) +
∫ x

a

{f(t, v(t))− g(t, v(t))} dt

+
∫ x

a

{f(t, u(t))− f(t, v(t))} dt.

Upon taking the norm on both sides, we obtain

‖u(x)− v(x)‖ ≤ ‖u(a)− v(a)‖+ (b− a)ε +
∫ x

a

L‖u(t)− v(t)‖dt

for a ≤ x ≤ b. Define

∆(x) := ‖u(x)− v(x)‖
R(x) := ‖u(a)− v(a)‖+ (b− a)ε +

∫ x

a

L‖u(t)− v(t)‖dt.

Then

∆(x) ≤ R(x)
R′ = L∆(x) ≤ LR(x)

It follows that

d

dx
(R(x)e−L(x−a) = e−L(x−a)(R′(x)− LR(x)) ≤ 0.

The results

R(x)e−L(x−a) ≤ R(a)
∆(x) ≤ R(a)eL(x−a)

follows form the non-increasing property.

Corollary 1.1.3 Suppose f(x, y) satisfies condition in Theorem 1.1.1. Then
the IVP has a unique solution.

Remark. Theorem 1.1.1 states that Lipschitz problems are well-posed. That
is, small perturbations in the stated problem only leads to small changes in the
solution. This is the basis of numerical ODE.
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1.2 The Euler Method

Consider the IVP
y′ = f(x, y), y(x0) = y0 (1.9)

with x, y ∈ R and x ∈ [a, b]. In this section we want to use so called Euler
method, the simplest numerical method,

yn+1 := yn + hf(xn, yn) (1.10)

where xn = x0 +nh is the n-th nodal point and h is the step size, to understand
the following questions:

1. What is the magnitude of the global error

en := yn − y(xn) (1.11)

at the n-th step? How does the error propogate?

2. How does the step size h affect the accuracy?

3. What kinds of errors are involved in the calculation? How do they affect
the overall accuracy? How to control the error to get the best possible
accuracy?

Definition 1.2.1 The local truncation error Tn+1 at xn+1 for the method (1.10)
is defined to be

Tn+1 := y(xn+1)− y(xn)− hf(xn, y(xn)). (1.12)

That is, the local truncation error is the difference between the exact solution
y(xn+1) and the approximate solution yn+1 provided no previous errors have
been introduced into the numerical scheme.

Lemma 1.2.1 Assume that f(x, y) satisfies Lipschitz conditions in y with con-
stant L and in x with constant K. Then Tn+1 = O(h2).

Proof. By the mean value theorem, there exists 0 ≤ θ ≤ 1 such that

|Tn+1| = |hf(xn + θh, y(xn + θh))− hf(xn, y(xn))|
≤ h|f(xn + θh, y(xn))− f(xn, y(xn))|

+h|f(xn + θh, y(xn + θh))− f(xn + θh, y(xn))|
≤ θh2K + hL|y(xn + θh)− y(xn)|
≤ θ(K + LZ)h2

where Z := maxx∈[a,b] |y′(x)|.
Remark. If y′′ is continuous and bounded by C, then by Taylor’s Theorem

we know

|Tn+1| = h2

2
|y′′(ξ)| ≤ C

2
h2 (1.13)
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where ξ ∈ (xn, xn+1).
Subtracting (1.12) from (1.10), we can now express the global error en+1 at

xn+1 as
en+1 = en + h[f(xn, yn)− f(xn, y(xn))]− Tn+1. (1.14)

It follows that
|en+1| ≤ (1 + hL)|en|+ T (1.15)

where T = max |Tn| = O(h2). This inequality (1.15) can be applied repeatedly.
Hence we obtain the following theorem.

Theorem 1.2.2 Given any n and h, so long as a ≤ x0 + nh ≤ b, we have the
estimate

|en| ≤ T
(1 + hL)n − 1

hL
+ (1 + hL)n|e0|

≤ T

hL
(eL(b−a) − 1) + eL(b−a)|e0|. (1.16)

Proof. Obvious the theorem is true when n = 0. Assume now that the
theorem is true for n. We have from (1.15) that

|en+1| ≤ (1 + hL)T
(1 + hL)n − 1

hL
+ (1 + hL)n+1|e0|+ T

= T
(1 + hL)n+1 − 1

hL
+ (1 + hL)n+1|e0|.

The assertion follows from the fact that 1 + hL ≤ ehL.
Remark. It is clear from the inequality (1.16) that if e0 is at least O(h2),

then en is of order O(h). In particular, this shows that as h −→ 0 (Consequently,
n −→∞ with x = x0 + nh fixed), yn −→ y(x).

Applying the scheme (1.10) to the differential equation

y′ = λy, (1.17)

we obtain a difference equation

yn+1 = (1 + λh)yn. (1.18)

In this case, the global error becomes

en+1 = (1 + λh)en + [−y(xn+1 + (1 + λh)y(xn) (1.19)
= Propagated Error + Local Truncation Error.

Obviously the propagated error is amplied unless |1 + λh| ≤ 1. In the complex
λh-plane, this inequality implies a unit disc centered at the point (−1, 0) which
is called the region of absolute stability. When λ ≤≤ 0 (the so called stiff
equation), the region imposes severe restriction on the step size h in order to
maintain reasonable answers.
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Example. The effect of absolute stability can be seen from the example:

y′ = −10000(y − t2) + 2t
y(0) = 0

Calculate y(1) = ?

Suppose the Euler method was used with step size h = 10−m on a machine with
10 significant digits of accuracy. We obtain the following results:

h n y(1)
1 1 0
0.1 10 0.90438207503 ×1016

0.01 100 overflow
0.001 1000 0.99999900001
0.0001 10000 0.99999990000
0.00001 100000 0.99999998997

In general, errors when solving ODEs numerically are attributed to the fol-
lowing sources:

1. Truncation Error: errors in discretizing the differential equation to a dif-
ference equation.

2. Calculation Error: errors accumulated from previous steps.

3. Round-off Error: errors due to float-point arithmetic.

Most calculation on large electronic computers will have considerably larger
truncation errors than roung-off errors. However, when the computation re-
quires smaller step sizes and hence larger number of iterations, it is possible
that round-off errors eventually are built up to affect the solution.

In practice, due to the floating-point arithmetic, an Euler step should be of
the form

yn+1 = yn + hf(xn, yn) + rn+1. (1.20)

We now analyze the effect of the round-off errors. Observe that

en+1 = en + h[f(xn, yn)− f(xn, y(xn)]− Tn+1 + rn+1

= en + h

[
en

∂f

∂y
(xn, y(xn)) +

1
2
e2
n

∂2f

∂y2
(xn, ηn)

]

−1
2
h2y′′(xn)− 1

6
h3y′′′(ξn) + rn+1. (1.21)

Define δn := en

h . Then (1.21) leads to the difference equation

δn+1 = δn + h

[
δn

∂f

∂y
− 1

2
y′′

]
+

1
2
e2
n

∂2f

∂y2
− 1

6
h2y′′′ +

rn+1

h

= δn + h

[
δn

∂f

∂y
− 1

2
y′′

]
+ O(h2) +

rn+1

h
(1.22)
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This amounts to an Euler step applied to the IVP

dδ

dx
=

∂f

∂y
δ − 1

2
y′′ + O(h) +

r

h2
(1.23)

δ(x0) =
e0

h
. (1.24)

By Theorem 1.2.2, we know δn = δ(xn) + O(h). If follows that

en = h[δ̃(xn) + O(h)] (1.25)

where δ̃(x) solves the IVP

dδ

dx
=

∂f

∂y
δ − 1

2
y′′ + O(h) +

r

h2
(1.26)

δ(x0) =
e0

h
(1.27)

since δ(x)− d̃elta(x) = O(h) by Theorem 1.1.2.


