
Chapter 3

Step Control

3.1 Preliminaries

In this chapter, we shall study in more details the error analysis involved in
one-step methods. Our ultimate goal is to use this analysis to design control
mechanism for changing step sizes.

Definition 3.1.1 A one-step method is a numerical shceme that can be written
in the form

yn+1 = yn + hψf (xn, yn, h) (3.1)

where ψf (xn, yn, h) is determined by f, xn, yn and h.

Definition 3.1.2 The method (3.1) is convergent if for every fixed x, yn −→
y(x) whenever y0 −→ y(0), h = x

n and n −→∞.

Definition 3.1.3 The local truncation error at xn+1 of the method (3.1) is
defined to be Tn+1 where

Tn+1 := y(xn+1)− y(xn)− hψf (xn, y(xn), h). (3.2)

Definition 3.1.4 The method (3.1) is said to be of order p if p is the largest
integer for which Tn+1 = O(hp+1) for every n.

Remark. In general, the local truncation error for method (3.1) is of the
form

Tn+1 = φ(xn, y(xn))hp+1 + O(hp+2) (3.3)

where φ(xn, y(xn)) is called the principal error function.
Example. The local truncation error for a 2-stage Runge-Kutta method is
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Definition 3.1.5 The method (3.1) is said to be consistent if

ψf (x, y, 0) = f(x, y).

Remark. If (3.1) is consistent, then

T = y(x + h)− y(x)− hψf (x, y(x), h)
= hy′(x)− hψf (x, y(x), 0) + O(h2) = O(h2).

Thus a consistent method has order at least one.

3.2 Error Estimate for Runge-Kutta Methods

Suppose the underlined Runge-Kutta method is of order p and that no previous
errors have been introduced, then

y(xn+1)− yn+1 = φ(xn, y(xn))hp+1 + O(hp+2). (3.4)

Suppose we compute another approximation y∗n+1 to y(xn+1) by using the same
method but with step size 2h. We have

y(xn+1)− y∗n+1 = φ(xn−1, y(xn−1))(2h)p+1 + O(hp+2) (3.5)
nonumber (3.6)

= φ(xn, y(xn))(2h)p+1 + O(hp+2). (3.7)

It follows that

yn+1 − y∗n+1 = (2p+1 − 1)φ(xn, y(xn))hp+1 + O(hp+2).

The principal local truncation error, that is taken as an estimate for the local
truncation error, may be expressed as

φ(xn, y(xn))hp+1 =
yn+1 − y∗n+1

2p+1 − 1
. (3.8)

Remark. The above estimate is usually quite adequate for step control
purpose, but it involves a considerable increase in the computational effort.
Many other error estimators are available in the literature. For example,

1. The quantity

En+1 :=
1
30

(10yn−2 + 9yn−1 − 18yn − yn+1 + 3h [fn−2 + 6fn−1 + 3fn])

can be used as an error estimator for the fourth order Runge-Kutta method.
Note that the formula involves evaluations of f that has already been made
in previous steps. (Ref: R. E. Scraton, Estimation of the truncation error
in RK and allied processes, Comput. J., 7(1964), pp246-248.)
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2. The 5-stage Runge-Kutta method
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is a fourth order method. It can be shown that the quantity defined by

Tn+1 =
hqr

s
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is a reasonable estimate for the local truncation error.

It should be noted that both examples above do not require additional function
evaluation in order to compute the error estimate. It appears that all error
estimates of the local truncation errors for Runge-Kutta methods either aver-
age the error over a number of steps (memory) or require additional function
evaluations. This is one of the drawback of nonlinear methods. (Ref: Shampine
and Watts, The art of writing a Runge-Kutta code, Mathematical Software III,
ed. John Rice, pp. 257-275.)

Another way to obtain error estimates is to derive Runge-Kutta methods in
the form:

a B
cT

ĉT

ET

That is, we seek two methods such that the one defined by a, c,B has order p
and that defined by a, ĉ, B has order p+1. The difference between the values for
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yn+1 generated by these two methods is then an estimate of the local truncation
error. Define E := ĉ− c. Then the error estimate is given by

Tn+1 := h

R∑
r=1

Eiki.

Such a method usually is labeled as (p, p + 1). Perhaps the most popular (4, 5)
method is the so called RKF45 developed by Fehlberg:
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Note that if the error estimate is not required, then this is a 5-stage (fourth
order) method.

3.3 Global Error Analysis

In this section we prove that the global error is usually one order less than the
local truncation error.

Theorem 3.3.1 Assume ψf (x, y, h) in (3.1) is continuous in x, y and h for
0 ≤ x ≤ b, 0 ≤ h ≤ h0 and all y. Furthermore, suppose ψf satisfies a Lipschitz
condition in x, y and h. Then the method (3.1) is convergent if and only if it is
consistent.

Proof. We first show consistency implies convergence. Denote ψf (x, y, 0) =
g(x, y). Consider the IVP

z′ = g(x, z) (3.9)
z(0) = y0.
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We want to show that the numerical solution of (3.1) converges to z(x). Observe
that

yn+1 = yn + hψf (xn, yn, h)

z
(i)
n+1 = z(i)

n + hg(i)(xn + θ(i)h, z(xn + θ(i)h))

where (i) means the i-the component of a vector. It follows that

e
(i)
n+1 = e(i)

n + h
[
ψ

(i)
f (xn, yn, h)− ψ

(i)
f (xn, z(xn), h) + ψ

(i)
f (xn, z(xn), h)

−ψ
(i)
f (xn, z(xn), 0) + ψ

(i)
f (xn, z(xn), 0)− g(i)(xn + θ(i)h, z(xn + θ(i)h))

]
We have the following estimates:

‖ψ(i)
f (xn, yn, h)− ψ

(i)
f (xn, z(xn), h)‖ ≤ Ly‖en‖

‖ψ(i)
f (xn, z(xn), h)− ψ

(i)
f (xn, z(xn), 0)‖ ≤ Lhh

and

|ψ(i)
f (xn, z(xn), 0)− g(i)(xn + θ(i)h, z(xn + θ(i)h))|

= |g(i)(xn, z(xn))− g(i)(xn + θ(i)h, z(xn + θ(i)h))|
≤ Lxθ(i)h + Ly‖z′(xn + ξθ(i)h)‖θ(i)h ≤ Lh.

Therefore,

‖en+1‖ ≤ ‖en‖+ hLy‖en‖+ h2(Lh + L)
= (1 + hLy)‖en‖+ h2(Lh + L).

It follows (see the proof of Theorem 1.2.2) that

‖eN‖ ≤ (Lh + L)h
eLyb−1

Ly
+ eLyb‖e0‖

where x = xN , h = x
N . Obviously, as h goes to zero (N goes to ∞), so does eN .

Suppose now the method converges. Then z(x) ≡ y(x). The uniqueness
theorem implies that g(x, y) = f(x, y).

Remark. The hypotheses about ψf in the above theorem are satisfied, in
general, so long as the function f satisfies a Lipschitz condition in y.

Theorem 3.3.2 Assume ψf satisfies conditions in Theorem 3.3.1. Assume
also that the local truncation error Tn+1 defined in (3.2) is bounded by

‖Tn+1‖ ≤ Dhp+1. (3.10)

Then

‖yn − y(xn)‖ ≤ Dhp eLyb−1

Ly
+ eLyb‖y0 − y(x0‖. (3.11)
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Proof. By definition, we have

en+1 = yn − y(xn) + [hψf (xn, yn, h)− (y(xn+1)− y(xn)]
= en + h[ψf (xn, yn, h)− ψf (xn, y(xn), h)] + Tn. (3.12)

It follows that

‖en+1‖ ≤ ‖en‖+ hLy‖en‖+ hp+1D. (3.13)

The assertion follows.
Remark. We see from above theorem that the global error is one less than

the local truncation error.

Theorem 3.3.3 Suppose (3.3) holds, i.e., suppose

Tn+1 = φ(xn, y(xn))hp+1 + O(hp+2).

Suppose also that the function ψf has continuous second derivatives. Then

en = δ(xn)hp + O(hp+1) (3.14)

where δ(x) solves the IVP

δ′ = fy(x, y(x))δ + φ(x, y(x)) (3.15)

δ(0) =
e0

hp
. (3.16)

Proof. Define δn := en

hp . Upon substitution into (3.12), we obtain

δn+1 = δn + h1−p [ψf (xn, y(xn) + hpδn, h)− ψf (xn, y(xn), h)]
+ hφ(xn, y(xn)) + O(h2).

Observe that

ψf (xn, y(xn) + hpδn, h) = ψf (xn, y(xn), h) +
∂ψf (xn, y(xn), h)

∂y
hpδn + k1h

2p,

∂ψf (xn, y(xn), h)
∂y

hpδn =
∂ψf (xn, y(xn), 0)

∂y
hpδn + k2h

p+1.

We may, therefore, write

δn+1 = δn + h

[
∂f(xn, y(xn))

∂y
δn + φ(xn, y(xn)) + k1h

p + k2h

]
.

This difference scheme can be viewed as a Euler step applied to the differential
equation (3.15).
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3.4 Step Control

We have learned from numerical experiences that in order to solve an IVP
efficiently and accurately, one has to adjust the step size h over the interval by
taking into account the following three considerations:

1. The principal local truncation error remains at each step less than a pre-
scribed tolerance. This is the error control.

2. The quantity h̄ lies inside the region of absolute stability. This is the
stability control.

3. When a nonlinear algebraic equation has to be solved (such as when an
implicit method is applied), the iteration scheme (such as the Newton
method) has to converge. This is the convergence control.

Remark. All the results discussed in this chapter remains true for variable
step methods, provided

(a). We iterpret h as the maximum step size.

(b). Assume the existence of a function 0 < ∆ ≤ θ(t) ≤ 1 such that the step
size hn from xn to xn+1 is given by

hn := hθ(xn. (3.17)

The objective of a variable-step variable-order method is to generate a nu-
merical result that is acceptable as an approximation to the true solution with
minimum effort. We now consider the different possibilities:

Choice of Order. Assume we have available a number of methods with
orders r = 1, 2, . . .. Suppose for each method we also have determined the best
choice of step size hr so that the overhead is optimal while satisfying the error
tolerance. Among the many candidates (of different orders) we want to select
the optimal order that minimizes the total work. We can argue, similar to
Theorem 3.3.3, that for a variable-step method of order r:

en = δr(xn)hr
r + O(hr+1

r )

where δr(x) satisfies

δ′(x) =
∂f(x, y)

∂y
δ(x) + θr(x)φ(x, y). (3.18)

Thus, an estimate of hr is given by

‖en‖ ≈ ‖δr(xn)‖hr
r ≤ E. (3.19)

Suppose that the amount of work per step is kr in the r-th order method. The
total amount of work is therefore Nkr where N is the total step taken. In
general,

b− a

hr
≤ N ≤ b− a

∆hr
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and hence N = O( 1
hr

). The total work Wr is approximately given by

Wr =
Lr

hr

where Lr depends on the problem. Now consider

‖eN‖ ≈ ‖δr‖
(

Lr

Wr

)r

.

A qualitative graph of would be:

W
 

-1
r

||e ||n

Figure 3.1: Qualitative graph of ‖eN‖ versus W−1
r .

The points at which these curves cross depend on the values of ‖δr‖ and Lr.
However, we can already draw quite a general conclusion as follows:

i. For sufficient small en, we should use higher order method (as this will
result in larger W−1

r .

ii. For low accuracy problems, we should use lower order methods.

iii. It is not always true that more accuracy can be obtained by going to a
higher order method when a step size is fixed.
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In general for one-step method the choice of order is not as essential as the
choice of step size because all the function evaluations are based on information
in the current interval [xn, xn + hn]. No techniques are currently available on
the selection of orders for Runge-Kutta methods.

Choice of Step Size. Although the optimal order and the step size can
be asymptotically approximated, generally these criteria are too complicated to
make practical applications. We usuall have to give up the optimum choices by
working on a heuristic basis. This is particularly true for a one-step method.
(Remember that a multi-step method can eventually be reduced to a one-step
method.)

We now discuss how a step size is controlled. We shall assume that a system
of differential equation is being solved. We shall take into account that each
component of the solution may behave differently. Suppose at each step an
error estimate ERRi, i = 1, . . . , n has been obtained for the i-th component
Yi of the solution. Let RE and AE denote, respectively, the relative error
tolerance and the absolute error tolerance. Define EPS := max(RE,AE). To
each component, we associate a prescribed weight function Wi. For each step
we attempt to control the error so that

ERK :=

(
n∑

i=1

(
ERRi

Wi

)2
)1/2

≤ EPS. (3.20)

Example. By choosing the weight function appropriately, we can specify a
variety of error criteria:

• Wi := 1.0 =⇒ Absolute error in the i-th component is ≤ EPS.

• Wi := |Yi| =⇒ Relative error in the i-th component is ≤ EPS.

• Wi := |Y ′
i =⇒ Relative error with respect to the first derivative.

• Wi := |Yi| ∗RE/EPS + AE/EPS =⇒ |ERRi| ≤ |Yi ∗RE + AE.

• Wi := |Yi| or 1 at t = 0, and then Wi := max(Wi, |Yi| =⇒ Relative error
for increasing components and absolute error for decreasing components.

A heuristic control mechanism is as follows:

1. Compute

ρ :=
(

EPS

2ERK

)1/p

. (3.21)

2. If (3.20) is satisfied, the step is successful. Estimate the next step size
hn+1:

(a) If ρ ≥ 2, then hn+1 := 2hn.
(b) If 1 ≤ ρ < 2, then either hn+1 := hn or hn+1 := ρ9/10hn.

3. If (3.20) fails, the step is not acceptable. Reduce the step size by a factor
of max{0.5,min{0.9, ρ}}.


