
Chapter 4

Linear Multistep Methods

4.1 Introduction

Runge-Kutta methods are a one-step method because they require only the
value at one mesh point xn−1 to compute the value of the approximate solution
at the next xn. Notice, however, that the Runge-Kutta method does invoke a
series of intermediate values during the computation. The idea of a multistep
method is to use previously calculated values at a number of mesh points to aid
the computation for later points much as those intermediate values used in a
Runge-Kutta method.

Consider the initial value problem

dy

dx
= f(x, y), y(a) = y0 (4.1)

where x, y, f ∈ R. A method that makes use of the values of the dependent vari-
able y(x) and its derivative f(x, y) at k different mesh points xn−1, xn−2, . . . , xn−k

is called a multistep or a k-step method. More precisely, after approximations
at xn−k, . . . , xn−1 have been determined, we have values yn−k, . . . , yn−1 and
hy′n−k, . . . , hy′n−1 available. We want to use this information to determined yn

and hy′n at xn. We define

Yn := [yn, yn−1, . . . , yn−k+1;hy′n, y′n−1, . . . , hy′n−k+1]
T . (4.2)

The objective of a multistep method is to find a numerical approximation for
Yn from Yn−1 and to repeat this process.

Remark. Apparently the vector Yk−1, whose components are called the
starting values, must be known prior to the iteration. A common technique
to generate the starting values is to use the Runge-Kutta method to compute
y1, . . . , yk−1 first and then set hy′i := hfi for i = 1, . . . , k − 1.

Suppose the starting value Yk−1 is known somehow, an iteration process may
be as follows:

Yn,(0) := BYn−1 (4.3)
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where

Yn,(0) := [yn,(0), yn−1, . . . , yn−k+1;hy′n,(0), y
′
n−1, . . . , hy′n−k+1]

T , (4.4)

B :=




α1 α2 . . . αk β1 β2 . . . βk

1 0 . . . 0 0 . . . 0
0 1 . . . 0 0
...

. . .
0 0 1 0
γ1 γ2 . . . γk δ1 δ2 . . . δk

0 0 1 0
0 1

...
. . .

0 0 0 1 0




(4.5)

and αi, βi, γi, δi are constants to be determined so that

y(xn) ≈ yn,(0) :=
k∑

i=1

(αiyn−i + βihy′n−i), (4.6)

hy′(xn) ≈ hy′n,(0) :=
k∑

i=1

(γiyn−i + δihy′n−i). (4.7)

Note that because yn,(0) is not exact,

G(Yn,(0)) := −(Yn,(0))k+1 + hf(xn, (Yn,(0))1) 6= 0. (4.8)

One may correct this error by a process like

Yn,(1) := Yn,(0) + cG(Yn,(0))

where c is a suitable constant vector and may even repeat this process by

Yn,(m+1) := Yn,(m) + cG(Yn,(m)) (4.9)

for m = 1, 2, . . .. The process may be repeated for a fix number of iterations or
until |G| << 1. The scheme defined in (4.3) usually is known as the predictor
and the scheme in (4.9) is known as the corrector.

Definition 4.1.1 Suppose that γi = δi ≡ 0 for 1 ≤ i ≤ k in (4.3) and that
ci = 0 in (4.9) expect the (k + 1)-th position which is 1. The resulting scheme

yn :=
k∑

i=1

(αiyn−i + βihy′n−i) (4.10)

hy′n := hfn (4.11)

is called an explicit k-step method.
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Remark. Note that the additional iteration in the corrector process has no
effect.

Remark. Suppose c = [β∗0 , 0, . . . , 0; 1, 0, . . .]T in (4.9). Then

yn,(1) = yn,(0) + β∗0(hfn,(0) − hy′n,(0))

=
k∑

i=1

[
(αi − β∗0)γiyn−i + (βi − β∗0δi)hy′n−i

]
+ β∗0hfn,(0).

If we define

α∗i := αi − β∗0γi,

β∗i := βi − β∗0δi,

then we have a new scheme

yn,(m+1) =
k∑

i=1

(α∗i yn−i + β∗i hy′n−i) + β∗0hfn,(m), (4.12)

hy′n,(m+1) = hfn,(m). (4.13)

Definition 4.1.2 In the sense of convergence, we may rewrite the scheme as

yn =
k∑

i=1

(α∗i yn−i + β∗i hy′n−i) + β∗0hf(xn, yn), (4.14)

hy′n = hfn (4.15)

which is called an implicit k-step method.

Remark. Note that (4.14) is a nonlinear equation that must be solved for
yn.

4.2 Derivation of Linear Multistep Methods

There are three ways to derive linear multistep methods. We shall pay our
attention to the derivation of (4.10) and (4.12) in particular.

Through the Taylor expansion: We have already seen how the Euler
method can be derived. Consider now the expansion:

y(xn + h) = y(xn) + hy(1)(xn) +
h2

2
y(2)(xn) + O(h3),

y(xn − h) = y(xn)− hy(1)(xn) +
h2

2
y(2)(xn) + O(h3).

Clearly we have

y(xn + h)− y(xn − h) = 2hy(1)(xn) + O(h3) = 2hf(xn, y(xn)) + O(h3). (4.16)



4 CHAPTER 4. LINEAR MULTISTEP METHODS

Suppose yn+1 ≈ y(xn + h), yn−1 ≈ y(xn−1) and yn ≈ y(xn). Then we have
arrived at an explicit 2-step method,

yn+1 = yn−1 + 2hfn, (4.17)

that is also known as the midpoint rule and has local truncation error O(h3).
Suppose we are looking for a general linear 1-step method, i.e.,

yn = α1yn−1 + hβ0fn + hβ1fn−1 (4.18)

where α1, β9, β1 are to be determined. We consider the equation

y(xn−1 + h) = α1y(xn−1) + hβ0y
(1)(xn−1 + h) + hβ1y

(1)(xn−1). (4.19)

Upon expanding (4.19) about xn−1 and collecting like powers of h, we obtain

(1−α1)y(xn−1)+h(1−β0−β1)y(1)(xn−1)+h2(
1
2
−β0)y(2)(xn−1)+O(h3) = 0.

(4.20)
Setting the coefficients zero, we arrive at a 1-step scheme

yn = yn−1 +
h

2
(fn + fn−1) (4.21)

that, also known as the Trapezoidal rule, is implicit and has local truncation
error O(h3).

Example. It can be shown that the most accurate linear 2-step method is
the so called Simpson’s rule:

yn = yn−2 +
h

3
(fn + 4fn−1 + fn−2) (4.22)

that has local truncation error O(h5). (This is a homework problem.)
Through numerical integration: Clearly we should have

y(xn)− y(xn−1) =
∫ xn

xn−1

y′(x)dx =
∫ xn

xn−1

f(x, y(x))dx. (4.23)

We approximate the integrand by a polynomial of degree zero, say by the con-
stant f(xn−1, y(xn−1)). This leads to

y(xn)− y(xn−1) ≈ hf(xn−1, y(xn−1))

and hence suggests the scheme

yn = yn−1 + hf(xn, yn)

that is the Euler method. If the integrand is approximated by a polynomial of
degree one, say by the segment connecting the two endpoints, then we obtain
the Trapezoidal rule (4.21).
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Similarly, consider the integral equation

y(xn)− y(xn−2) =
∫ xn

xn−2

f(x, y(x))dx. (4.24)

If we assume f ≈ f(xn−1, y(xn−1)), then we have the midpoint rule (4.17). If
we use a quadratic polynomial to approximate the integrand, then we obtain
the Simpson’s rule (4.22).

In general, there is a correspondence between linear multistep methods and
the so called Newton-Cotes integration fromulas. Specifically, if one approxi-
mates f(x, y(x)) in (4.23) by an interpolation polynomial with data (xn−i, fn−i)
for i = 1, . . . , k, the resulting numerical scheme is called the Adams-Bashforth
(AB) method. If one interpolates f with one additional data (xn, fn), the re-
sulting implicit scheme is called the Adams-Molton (AS) method.

Example. Suppose the function f in (4.23) is approximated by a quadratic
polynomial that interpolates f at xn−2, xn−1 and xn. It can be shown that the
following scheme is arrived:

yn = yn−1 +
h

12
(5fn + 8fn−1 − fn−2).

Remark. Derivation through numerical integration can only lead to meth-
ods of the form

yn = yn−i + h
k∑

i=0

βjfn−j . (4.25)

The subclass of methods when i = 1 are usually referred to as Admams methods.
The methods when i = 2 are referred to as Nyström methods.

Through interpolation: We only sketch the idea here. Let the exact solu-
tion y(x) be interpolated by a Hermite polynomial over the interval [xn−1, xn],
i.e.,

p(xn) = yn, p(xn−1) = yn−1;
p′(xn) = fn, p′(xn−1) = fn−1.

Generally, p(x) should be a cubic polynomial. If, instead, we insist that p(x) =
ax2+bx+c so that there are only three free parameters. Then to satisfy the four
interpolating conditions, there must be a relationship among the four quantities
yn, yn−1, fn and fn−1. Indeed, we must have

yn = yn−1 +
h

2
(fn−1 + fn)

which is the Trapezoidal rule.

4.3 Convergence, Consistency and Stability

Corresponding to a given a linear multistep method
k∑

i=0

(αiyn−i + hβifn−i) = 0, (4.26)
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we define a linear difference operator

Lh(y(x)) :=
k∑

i=0

(αiy(x− ih) + hβiy
′(x− ih)) (4.27)

for any C1 function y(x). Upon expanding the right-hand side of (4.27) about
x, we have

Lh(y(x)) =
r+1∑
q=0

cqh
qy(q) + O(hr+2)

where

cq :=

{ ∑k
i=0 αi if q = 0,∑k
i=0

[
(−i)q

q! αi + (−i)q−1

(q−1)! βi

]
if q > 0.

(4.28)

Definition 4.3.1 The linear difference operator L and the associated linear
multistep method is said to be of order r if cq = 0 for all q ≤ r and cr+1 6= 0.

Remark. The equations cq = 0 for all q ≤ r determine the coefficients for
an r-th order method.

Definition 4.3.2 The local truncation error at xn of a linear k-step method is
defined to be the quantity Lh(y(xn)) where y(x) is the exact solution.

Remark. The above definition is motivated by what follows: By (4.27), we
have

k∑
i=0

αiy(xn − ih) = Lh(y(xn))− h

k∑
i=0

βiy
′(xn − ih). (4.29)

On the other hand, by (4.26), we have

k∑
i=1

αiyn−i = −h

k∑
i=0

βifn−i. (4.30)

Suppose yn−i = y(xn− ih) for i = 1, . . . , k (This is called the local assumption.).
Substracting (4.30) from (4.29) yields

α0(y(xn)− yn) = Lh(y(xn)) + hβ0(f(xn, yn)− f(xn, y(xn)). (4.31)

If the method (4.26) is explicit, i.e., β0 = 0, then Lh(y(xn)) does measure the
local truncation error (Most schemes have α0 = 1.). If the method (4.26) is
implicit, then the mean value theorem implies that

α0(y(xn)− yn) = Lh(y(xn)) + hβ0
∂f(xn, ξn

∂y
(yn − y(xn))

for some ξn lying between yn and y(xn). It follows that

Lh(y(xn)) = (α0 + hβ0
∂f(xn, ξn)

∂y
(y(xn)− yn). (4.32)

Thus Lh(y(xn)) still measures the local truncation error.
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Definition 4.3.3 Given a linear multistep method (4.26), the polynomial

ρ(ξ) :=
k∑

i=0

αiξ
k−i (4.33)

σ(ξ) :=
k∑

i=0

βiξ
k−i (4.34)

are called the first and the second characteristic polynomials, respectively.

Definition 4.3.4 A linear k-step method is said to be consistent if and only if
it has order |r| ≥ 1, i.e., c0 = c1 = 0.

Remark. The linear multistep method (4.26) is consistent if and only if
ρ(1) = 0 and ρ′(1) + σ(1) = 0.

Definition 4.3.5 The linear multistep method (4.26) is said to be zero stable
if all solutions of the homogeneous linear difference equation

k∑
i=1

αiyn−i = 0 (4.35)

are bounded for all n.

Consider any linear difference equation

k∑
i=0

αiyn−i = φn, n = n0, . . . (4.36)

where α0, . . . , αk are constants independent of n, α0 6= 0, αk 6= 0, and {φn}, n =
n0, . . . , is a known sequence. A solution of this difference equation is a sequence
of values {yn}, n = n0, . . . , that satisfies (4.36) identically for all n = n0, . . ..
The general solution (4.36) can be written as

yn = ŷn + ψn (4.37)

where ŷn is the general solution of the associated homogeneous equation (4.35)
and ψn is a particular sulution of (4.36). To determine ŷn, we try

ŷn = rn. (4.38)

Substituting (4.38) into (4.35 yields

k∑
i=0

αir
n−i = 0.

Dividing by rn−k yields

ρ(r) =
k∑

i=0

αir
k−i = 0. (4.39)
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Let the k roots of ρ(r) be denoted by r1, . . . , rk. We calculated ŷn as follows:
Case 1: Suppose all roots are distinct. Then all solutions rn

j , j = 1, . . . , k, n =
n0, . . . are linearly independent in the sense that

∑k
j=1 ajr

n
j = 0 for all n only

if aj = 0 for all j. Hence the general solution ŷn is given by

ŷn =
k∑

j=1

djr
n
j , n = n0, . . . (4.40)

where dj are arbitrary constants.
Case 2: If some of all roots are repeated, e.g., suppose r1 = r2 = r3 and

the remaining roots are distinct, then the solutions rn
1 , nrn

1 , n2rn
1 , rn

4 , . . . , rn
k are

linearly independent. The general solution ŷn is given by

ŷn = d1r
n
1 + d2nrn

1 + d3n
2rn

1 + d4r
n
4 + . . . + dkrn

k . (4.41)

Remark. Observe that {ŷn} is bounded if and only if all roots of ρ(r) = 0
have modules |rj | ≤ 1 and those with modules 1 are simple.

Definition 4.3.6 The linear multistep method (4.26) is said to converge if for
all initial value problems

y′ = f(x, y)
y(a) = η,

we have
lim

h→0,nh=x−a
yn = y(xn) = y(x)

for all x ∈ [a, b] and for all solution {yn} of (4.26) with starting value yµ =
ηµ(h), µ = 0, 1, . . . , k − 1, satisfying limh→0 ηµ(h) = η for all µ.

Theorem 4.3.1 The necessary and sufficient conditions for a linear multistep
method to converge are that it be consistent and zero-stability.

Proof. Refer to Peter Henrici, Discrete Variable Methods in Ordinary Dif-
ferential Equations, John-Wiley, 1962.

Example. The midpoint rule (4.17) is consistent and zero stable. Applying
it to the problem

y′ = −y

y(0) = 1

gives rise to the difference equation

yn + 2hyn−1 − yn−2 = 0. (4.42)

The solution is of the form

yn = c1r
n
1 + c2r

n
2
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where r1 = −h +
√

1 + h2 and r2 = −h − √1 + h2. Initial condition implies
c1 + c2 = 1. We may express c1 and c2 in terms of the second starting value y1,
i.e.,

c1 = r2−y1
r2−r1

=
√

1 + h2 + h + y1

2
√

1 + h2

c2 = r1−y1
r1−r2

=
√

1 + h2 − h− y1

2
√

1 + h2
.

Note that |r1| < 1 and |r2| > 1. Thus |yn| is unbounded as n −→ ∞ unless y1

is specially selected. This phenomenon is called numerical unstability or weak
unstability. Note that the observation is not a contradition with the convergence
result because the step size h is fixed in this example.

We now analyze how the global errors are propogated. Recall that

k∑
i=0

αiyn−i = −h

k∑
i=0

βifn−i (4.43)

k∑
i=0

αiy(xn−i) = −h

k∑
i=0

βif(xn−i, y(xn−i)) + Lh(y(xn)). (4.44)

Now suppose that due to round-off errors and floating-point arithemetics, we
have

k∑
i=0

αiŷn−i = −h

k∑
i=0

βif(xn−i, ŷn−i) +Rn. (4.45)

Define
en := y(xn)− ŷn.

Then we have

k∑
i=0

αien−i = −h

k∑
i=0

βi (f(xn−i, y(xn−i))− f(xn−i, ŷn−i)) + Φn (4.46)

with
Φn := Lh(y(xn))−Rn.

As usual, we apply (4.46) to the model problem y′ = λy. We also assume that
Φn ≡ Φ for all n (This is reasonable since Φn is supposed to be small anyway.).
Then en is given by

en =
k∑

s=1

dsr
n
s +

Φ

λh
∑k

i=0 βi

(4.47)

where ds are constants depending upon the starting values and rs are roots of
the polynomial

Π(r, h̄) :=
k∑

i=0

(αi + h̄βi)rk−i (4.48)
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with h̄ := λh. In (4.47) we have assumed that Π(r, h̄) has distinct roots. The
case of multiple roots can be modified easily.

Definition 4.3.7 The polynomial Π(r, h̄) = ρ(r) + h̄σ(r) is called the stability
polynomial.

Definition 4.3.8 A linear multistep method is said to be absolutely stable for
a given h̄ if all roots rs of Π(r, h̄) satisfy |rs| < 1, and to be absolutely unstable
otherwise. The region absolute stability consists of all h̄ in the complex plan for
which the method is absolutely stable.

Theorem 4.3.2 Every consistent zero-stable linear multistep method is abso-
lutely unstable for small positive h̄.

Proof. Observe first that Π(r, 0) = ρ(r) which, by zero-stability, has r = 1 as
a simple root. Let r1 be the root of Π(r, h̄) that tends to 1 as h̄ → 0. Suppose
the method being considered is of order r so that Lh(y(x)) = O(hr+1). Now
observe

L(eλx) =
k∑

i=0

αie
λ(x−ih) + hλ

k∑
i=0

βoe
λ(x−ih)

= eλ(x−kh)

{
k∑

i=0

αie
(k−j)h̄ + h̄

k∑
i=0

βie
(k−j)h̄

}

= eλ(x−kh)Π(eh̄, h̄).

Suppose the roots of Π(r, h̄) are r1, . . . , rk so that

Π(r, h̄) = (α0 + h̄β0)(r − r1) · · · (r − rk).

It follows that

(α0 + h̄β0)(eh̄ − r1) · · · (eh̄ − rk) = O(h̄r+1).

As h̄ → 0, eh̄ → 1. Thus rs must be significantly different from eh̄. Therefore,

eh̄ − r1 = O(h̄r+1).

That is,
r1 = 1 + h̄ + O(h̄2). (4.49)

This shows the unstability.
Remark. Motivated by the above proof, we observe that

rn
1 = enh̄ + O(h̄r+1) ≈ eλ(xn−a).

Thus if the error grows at a rate similar to the rate at which the solution grows,
such a state of affairs generally is acceptable. We therefore have the following
definition.
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Definition 4.3.9 A linear multistep method is said to be relatively stable for
a given h̄ if the roots rs of the polynomial Π(r, h̄) satisfy |rs| < |r1| for all
s = 2, . . . , k.

Example. Consider the Simpson’s rule:

yn = yn−2 +
h

3
(fn + 4fn−1 + fn−2).

It follows that

ρ(r) = r2 − 1,

σ(r) = −1
3
(r2 + 4r + 1),

Π(r, h̄) = (1− h̄

3
)r2 − 4h̄

3
r − (1 +

h̄

3
).

By (4.49), we know one root already, i.e.,

r1 = 1 + h̄ + O(h̄2).

Assume the other root is of the form

r2 = −1 + γh̄ + O(h̄2).

Then we must have

(1− h̄

3
)(−1 + γh̄)2 − 4h̄

3
(−1 + γh̄)− (1 +

h̄

3
) = O(h̄2)

(1− h̄

3
)(1− 2γh̄) +

4h̄

3
h̄− (1 +

h̄

3
) = O(h̄2).

It follows that

1− 2γh̄ ≈ 1− h̄

1− h̄
3

≈ (1− h̄)(1 +
h̄

3
+ O(h̄2)).

By comparing coefficients, we conclude that

r2 = −1 +
1
3
h̄ + O(h̄2).

Note that if h̄ > 0, then r1 > 1 and r2 > −1. Note also that if h̄ < 0, then
r1 < 1 and r2 < −1. In other words, Simpson’s rule is nowhere absolutely
stable. On the other hand, by solving Π(r, h̄) = 0 exactly, it can be shown that
the interval of relative stability for Simpson’s rule is (0,∞). Hence if ∂f

∂y < 0, is
is not advisable to use this method either.

Remark. It is important not to draw sharp conclusions from the above
weak stability theory for general nonlinear problems. The theory only gives a
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rough guide on the maximal allowable step size h. In practice, if h is taken to
be too close to that maximal step size, the method can perform poorly.

Remark. Concerning the region of absolute stability for Adams methods,
it is observed that the region for the implicit Adams-Molton method is larger
than that of the explicit Adams-Bashforth method of the same order.

A k-step method has coefficients α0 = 1, α1, . . . , αk, β0, β1, . . . , βk. Totally
there are 2k + 1 dimensions of freedom to choose these coefficients. It appears
that we may select these numbers to satisfy the 2k + 1 equations c0 = c1 =
. . . = c2k+1 = 0 defined in (4.28). This indeed is possible. Thus the maximum
attainable order of a k-step method is 2k for an implicit method and 2k − 1
for an explicit method. This kind of choice, however, is useless because of the
following theorems:

Theorem 4.3.3 Any k-step linear method of order r ≥ k+2 is not zero-stable.
More precisely, the highest zero-stable attainable order p∗(k) is

p∗(k) =
{

k + 2 if k is even;
k + 1 if k is odd. (4.50)

Proof. See Peter Henrici’s book for the proof.
Remark. Simpson’s rule is the only linear multistep method that attains

its optimal order. As we have seen, it suffers from the following property.

Theorem 4.3.4 Any optimal linear multistep method has no interval of abso-
lute stability.

4.4 Predictor-Corrector Methods

We first look at some facts about the Adams-Bashforth (AB) methods and the
Adams-Moulton (AM) methods:

AB AM
k 1 2 3 4 1 2 3 4
r 1 2 3 4 2 3 4 5

cr+1
1
2

5
12

3
8

251
720 − 1

12 − 1
24 − 19

720 − 3
160

α -2 -1 − 6
11 − 3

10 −∞ -6 -3 − 90
49

We immediately see sereral advantages of implicit methods:

1. Higher order of accuracy for a given step number k.

2. Smaller error constant cr+1 for a given order r.

3. Larger interval (α, 0) of absolute stability.



4.4. PREDICTOR-CORRECTOR METHODS 13

On the other hand, implicit methods always involve a nonlinear system of equa-
tions that has to be solved iteratively. We are thus motivated to consider the
so called Predictor-Corrector (PC) methods. In a PC method we first use a
separate explicit method to estimate yn. The estimate is used as the initial
guess y

(0)
n for the implicit method where iteration is taking place to find the

acceptable yn. There are two ways to proceed the PC method:
Correct to convergence: Preassigh a tolerance ε > 0, and the iteration

stops only when |y(s+1)
n − y

(s)
n | < ε (or |y(s+1)

n −y(s)
n |

|y(s+1)
n | < ε). In this case, we have

no knowledge in advance how many function evaluations are needed. It can be
shown that the local truncation error and the weak stability characteristics of
such a method are precisely those of the corrector along. The properties of the
predictor are not important.

P (EC)m or P (EC)mE mode: Let P stand for the predictor, E for the
function evaluation of f and C for the corrector. Suppose also

P :
k∑

i=0

αiyn−i + h

k∑
i=1

βifn−i = 0, (4.51)

C :
k∗∑
i=0

α∗i yn−i + h
k∗∑
i=0

iβ∗i fn−i = 0. (4.52)

Definition 4.4.1 By a P (EC)mE mode, we mean the following scheme:

α0y
(0)
n +

k∑
i=1

(αiy
(m)
n−i + hβif

(m)
n−i) = 0,

For s = 0, 1, . . . ,m− 1, do:

f
(s)
n = f(xn, y

(s)
n )

α∗0y
(s+1)
n +

∑k
i=1(α

∗
i y

(m)
n−i + hβ∗i f

(m)
n−i) + hβ∗0f

(s)
n = 0,

}
(4.53)

f (m)
n = f(xn, ym

n ).

Definition 4.4.2 By a P (EC)m mode, we mean the following scheme:

α0y
(0)
n +

k∑
i=1

(αiy
(m)
n−i + hβif

(m−1)
n−i ) = 0,

For s = 0, 1, . . . ,m− 1, do:

f
(s)
n = f(xn, y

(s)
n ),

α∗0y
(s+1)
n +

∑k
i=1(α

∗
i y

(m)
n−i + hβ∗i f

(m−1)
n−i ) + hβ∗0f

(s)
n = 0.

}
(4.54)

We now study the local truncation error and the stability theory of the PC
methods. Let L and L∗ represent, respectively, the linear difference operator of
P and C. Suppose also

Lh(y(x)) = cr+1h
r+1y(r+1)(x) + O(hr+2), (4.55)

L∗h = c∗r∗+1h
r∗+1y(r∗+1)(x) + O(hr∗+2). (4.56)
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For convenience, suppose α0 = α∗0 = 1. Under the local assumption, we know

Lh(y(x)) = y(xn)− y(0)
n , (4.57)

and

L∗h(y(x)) = y(xn) +
k∗∑
i=1

(α∗i y(xn−i)

+hβ∗i f(xn−i, y(xn−i))) + hβ∗0f(xn, y(xn)). (4.58)

Furthermore, we know

y(s+1)
n +

k∗∑
i=1

(α∗i yn−i + hβ∗i f
(m−t)
n−i ) + hβ∗0f(xn, y(s)

n ) = 0 (4.59)

for s = 0, 1, . . . ,m−1 where t = 0 or 1 depending on the mode being considered.
It follows that

y(xn)− y(s+1)
n = L∗h − hβ∗0(f(xn, y(xn))− f(xn, y(s)

n ))

= L∗h(y(x))− hβ∗0
∂f

∂y
(xn, ξn)(y(xn)− y(s)

n ) (4.60)

where ξn lies between y(xn) and y
(s)
n . Depending upon the orders r and r∗

involved, we analyze the following cases:
When r ≥ r∗: The predictor has higher order than the corrector. We have

y(xn)− y(1)
n = L∗h + O(hr+2) = O(hr∗+1)

y(xn)− y(s+1)
n = L∗h + O(hr∗+2) = O(hr∗+1) for s ≥ 1.

In this case, therefore, the principal local truncation error of a PC method when
m ≥ 1 is that of the corrector alone.

When r = r∗ − 1: We have

y(xn)− y(1)
n =

(
c∗r∗+1y

(r∗+1)(xn)− β∗0
∂f

∂y
Cr∗y

(r∗−1)(xn)
)

hr∗+1

+O(hr∗+2) = O(hr∗+1)
y(xn)− y(s+1)

n = L∗h + O(hr∗+2) = O(hr∗+1) for s ≥ 1.

Thus, for m = 1 the principal local truncation error of the PC method, is of the
same order as that of the corrector, but with different constants. For m ≥ 2,
the principal local trucation error is that of the corrector alone.

When r = r∗ − 2: We have

y(xn)− y(1)
n = −β0

∂f

∂y
Cr∗−1y

(r∗−1)(xn)hr∗ + O(hr∗+1),

y(xn)− y(2)
n =

(
c∗r∗+1y

(r∗+1)(xn)− (β∗0
∂f

∂y
)2Cr∗−1y

(r∗−1)(xn)
)

hr∗+1

+O(hr∗+2) = O(hr∗+1)
y(xn)− y(s+1)

n = L∗h + O(hr∗+2) for s ≥ 2.
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Therefore for m ≥ 3, the principal local truncation error is that of the corrector
alone.

The trend is quite clear:

1. If r ≥ r∗, then the principal local truncation error is that of the corrector
alone.

2. If r = r∗ − q where 0 < q ≤ r∗, the the principal local trunction error is

(a) That of the corrector alone if m ≥ q + 1.

(b) Of the same order as the corrector but with different constants when
m = q.

(c) Of the form Khr∗−q+m+1 + O(hr∗−q+m+2) when m < q.

Based on the above analysis, we make the following conclusions:

• In the mode of correction to convergence, the principal local truncation
error is that of the corrector, regardless what the predictor is.

• The case r > r∗ is out of question.

• The case r = r∗ −m is the best bet, especially when m = 1.

• The case r = r∗ together with the so called Milne’s device is also advisable.

Suppose now that in a PECE mode, due to round-off errors, we have

ŷ(0)
n +

k∑
i=1

(αiŷ
(1)
n−i + hβif(xn−i, ŷ

(1)
n−i) = Rn (4.61)

and

ŷ(1)
n +

k∗∑
i=1

(α∗i ŷ
(1)
n−i + hβ∗i f(xn−i, ŷ

(1)
n−i)) + hβ∗0f(xn, ŷ(0)

n ) = R∗n. (4.62)

where Rn and R∗n are the local round-off errors. We also know by definitions
that

y(xn) +
k∑

i=1

(αiy(xn−i) + hβif(xn−i, y(xn−i))) = Lh(y(xn)), (4.63)

and

y(xn) +
k∗∑
i=1

(α∗i y(xn−i) + hβ∗i f(xn−i, y(xn−i)) + hβ∗0f(xn, y(xn)) = L∗h(y(xn)).

(4.64)
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Define

e(0)
n := y(xn)− ŷ(0)

n

e(1)
n := y(xn)− ŷ(1)

n .

When applying this mode to the test problem y′ = λy and assuming that
Lh(y(xn))−Rn and L∗h(y(xn))−R∗n are constants, we obtain

e(0)
n +

k∑
i=1

(αi + h̄βi)e
(1)
n−i = C1, (4.65)

e(1)
n +

k∗∑
i=1

(α∗i + h̄βi)∗e
(1)
n−i + h̄β∗0e(0)

n = C2. (4.66)

It follows that

e(1)
n +

k∗∑
i=1

(α∗i + h̄βi)∗e
(1)
n−i + h̄β∗0{−

k∑
i=1

(αi + h̄βi)e
(1)
n−i} = C3. (4.67)

Adding h̄β∗0e
(1)
n to the first sum and then substracting it from the second sume,

we may rewrite (assuming α0 = 1, β0 = 1) (4.67) as

k∗∑
i=0

(α∗i + h̄β∗i )e(1)
n−i − h̄β∗0

k∑
i=0

(αi + h̄βi)e
(1)
n−i = C3. (4.68)

Therefore, the stability polynomial of a PECE method is given by

ΠPECE(r, h̄) := ρ∗(r) + h̄σ∗(r)− h̄β∗0(ρ(r) + h̄σ(r)) = 0. (4.69)

The analysis can be extended to give the following stability polynomial for
the general P (EC)mE method:

ΠP (EC)mE(r, h̄) := ρ∗(r) + h̄σ∗(r) + Mm(h̄(ρ(r) + h̄σ(r)) = 0 (4.70)

where

Mm(h̄) :=
(−h̄β∗0)m(1 + h̄β0)

1− (−h̄β0)m
(4.71)

for m = 1, 2, . . .. A similar but somewhat more complicated analysis leads to

ΠP (EC)m(r, h̄) := −β∗0rk(ρ∗(r) + h̄σ∗(r)) + Mm(h̄(ρ∗(r)σ(r)− σ∗(r)ρ(r)) = 0.
(4.72)

Remark. Note that if |h̄β∗0 | < 1, then Mm(h̄) −→ 0 as m −→∞. It follows
that in the mode of correction to convergence the weak stability characteristics
are the same as those of the corrector alone.

Remark. It can be shown that both ΠP (EC)mE and ΠP (EC)m possess a root
r1 = eh̄ + O(h̄p+1) and hence both modes are absolutely unstable for h̄ > 0.
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4.5 Local Error Estimator

In the previous section, we have suggested that it would be advantageous to
choose a PC method for which r = r∗−m > 0. On the other hand, by choosing
r = r∗, there is a convenient way to estimate the principal local truncation
error of the PC method without calculating higher derivatives of y(x). In this
section, we explore the so call Milne’s device as follows:

Suppose r = r∗. Then we have

y(xn)− y(0)
n = cr+1h

r+1y(r+1)(xn) + O(hr+2), (4.73)
y(xn)− y(m)

n = c∗r+1h
r+1y(r+1)(xn) + O(hr+2). (4.74)

Upon substracting, we see

y(m)
n − y(0)

n = (cr+1 − c∗r+1)h
r+1y(r+1)(xn) + O(hr+2).

Therefore, the principal local truncation error can be estimated as

c∗r+1h
r+1y(r+1) ≈ c∗r+1

cr+1 − c∗r+1

(
y(m)

n − y(0)
n

)
. (4.75)

That is, the right-hand side of (4.75) which is immediately available from com-
putation, can be used to estimate the local truncation error. One must not be
too liberal in using (4.75), however, since the values y

(m)
n−i for i = 1, . . . , k used

in practice are not exact y(xn−i).
One alternative application of the Milne’s device is to improve y

(0)
n and y

(m)
n .

Note that similar to (4.75) we also have

cr+1h
r+1y(r+1) ≈ cr+1

cr+1 − c∗r+1

(
y(m)

n − y(0)
n

)
. (4.76)

Note also that

cr+1h
r+1y(r+1)(xn) = cr+1h

r+1y(r+1)(xn−1) + O(hr+1). (4.77)

Therefore,

cr+1h
r+1y(r+1)(xn) ≈ cr+1

cr+1 − c∗r+1

(
y
(m)
n−1 − y

(0)
n−1

)
. (4.78)

Comparing with (4.73), we find that

ŷ(0) := y(0)
n +

cr+1

cr+1 − c∗r+1

(
y
(m)
n−1 − y

(0)
n−1

)
(4.79)

is a better approximation to y(xn) than y
(0)
n . Similarly,

ŷ(m) := y(m)
n +

c∗r+1

cr+1 − c∗r+1

(
y(m)

n − y(0)
n

)
(4.80)
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is better than y
(m)
n . If we call such a step a modifier denoted by M , the we may

introduce the so called PM(EC)mME or PM(EC)mM modes of methods.
Remark. There are several other types of local error estimators. For exam-

ple, Shampine and Gordon have used the difference between a (k, k)-pair and
a (k − 1, k)-pair ABM methods to estimate the local error. We shall see that
the Nordsieck’s transformation also provides some information about the local
error.

4.6 Nordsieck’s Transformation

In this section we discuss the Nordsieck’s transformation and its application to
variable-step methods. The basic idea of Norsieck’s transformation is as follows:
Locally a linear multistep method represents the solution y(x) by a polynomial
ỹ(x). Suppose the degree of ỹ(x) is k. We should know ỹ(x) completely if we
know all derivatives of ỹ(x) of order 0, 1, . . . , k at a single point. (In approxi-
mation theory, this is called an oscullatory interpolation.)

We illustrate the Norsieck’s transformation by considering an ABM pair of
the same step number in the P (EC)m mode. Suppose

P : y
(0)
n = y

(m)
n−1 + h

k∑
i=1

βif
(m−1)
n−i , (4.81)

C : y
(s+1)
n = y

(m)
n−1 + h

k∑
i=1

β∗i f
(m−1)
n−i + hβ∗0f (s)

n , s = 0, . . . ,m− 1)(4.82)

where β∗0 6= 0. Note that

y(s+1)
n − y(s)

n = hβ∗0(f (s)
n − f (s−1)

n ) (4.83)

for s = 1, . . . ,m− 1 and that

y(1)
n − y(0)

n = hβ∗n

(
f (0)

n −
k∑

i=1

βi − β∗i
β∗0

f
(m−1)
n−i

)
. (4.84)

Denote

δj :=
βj − β∗j

β∗0
,

f (−1)
n :=

k∑
i=1

δif
(m−1)
n−i .

Then (4.84) can be written as

y(1)
n − y(0)

n = hβ∗0(f (0)
n − f (−1)

n ). (4.85)
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Define vectors

Y (s)
n := [y(s)

n , hf (s−1)
n , hf

(m−1)
n−1 , . . . , hf

(m−1)
n−k+1]

T (4.86)

for s = 0, 1, . . . ,m. Let

B :=




1 β1 β2 . . . βk

0 δ1 δ2 . . . δk

0 1 0 . . . 0
...

. . .

0
. . . 1 0




. (4.87)

Then the P (EC)m method can be written as

P : Y
(0)
n = BY

(m)
n−1 (4.88)

C : Y
(s+1)
n = Y (s)

n + h(fs
n − f (s−1)

n )




β∗0
1
0
...
0


 . (4.89)

We rewrite (4.89) as

C : Y (s+1)
n = Y (s)

n + F (Y (s)
n )c (4.90)

where

F (Y (s)
n := h(f (s)

n − f (s−1)
n ) (4.91)

c :=




β∗0
1
0
...
0




T

. (4.92)

Note that (4.88) and (4.90) are in the one-step method format, but a change of
step size will cause trouble because the vector Y

(s)
n involes past values. We now

incorporate into Norsieck’s idea, namely, we store the interpolating polynomial
via its derivatives at one single point rather than past values.

We begin with an example.
Example. Consider the case k = 3. Let the interpolating polynomial be

denoted as
I(x) = ax3 + bx2 + cx + d (4.93)
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so that

I(xn) = y(0)
n ,

I(xn−1) = y
(m)
n−1,

I ′(xn−1) = f
(m−1)
n−1 (4.94)

I ′(xn−2) = f
(m−1)
n−2

I ′(xn−3) = f
(m−1)
n−3

whereas the elimination of the four coefficients a, b, c and d among the five
equations in (4.94) will yield the 3-step Adams-Bashforth method

y(0)
n = y

(m)
n−1 +

h

12

(
23f

(m−1)
n−1 − 16f

(m−1)
n−2 + 5f (m−1)

n−3

)
. (4.95)

The specification of past values in

Y
(m)
n−1 = [y(m)

n−1, hf
(m−1)
n−1 , hf

(m−2)
n−2 , hf

(m−1)
n−3 ]T (4.96)

clearly determines I(x) uniquely. Alternatively, we now determine I(x) by spec-
ifying its values and its first three derivatives at xn−1, i.e., through values in
the vector

Z
(m)
n−1 := [I(xn−1), hI ′(xn−1),

h2

2!
I ′′(xn−1),

h3

3!
I ′′′(xn−1)]T . (4.97)

The key of success is to find how the information stored in Y
(m)
n−1 can be re-

stored from that in Z
(m)
n−1 and vise versa. The answer lies in the Norsieck’s

transformation:

Theorem 4.6.1 With

Q :=




1 0 0 0
0 1 0 0
0 3

4 −1 1
4

0 1
6 − 1

3
1
6


 ,

we have
Z

(m)
n−1 = QY

(m)
n−1 . (4.98)

Remark. The scaling of derivatives by powers of h has resulted in Q being
independent of h.

Going back to the general case, we define

Z
(m)
n−1 := [I(xn−1), hI ′(xn−1), . . . ,

hk

k!
I(k)(xn−1)]T . (4.99)

Then there exists a constant matrix Q such that

Z
(m)
n−1 = QY

(m)
n−1 . (4.100)
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Note that the first and the second components of Z
(m)
n−1 are always the same as

those of Y
(m)
n−1 by definition. Hence the first two rows of Q are always of the

form
1 0 0 . . . 0
0 1 0 . . . 0

The P (EC)m method (4.88) and (4.90) may now be transformed into

P : Z
(0)
n = QBQ−1Z

(m)
n−1, (4.101)

C : Z
(s+1)
n = Z(s)

n + F (Z(s)
n )d (4.102)

for s = 0, . . . ,m − 1 with d := Qc. Note that F depends upon only the first
two components of its argument and hence F (Z(s)

n = F (Y (s)
n .

Remark. When the step size is changed from h to αh, the Z
(m)
n−1 vector

can be updated by multiplying the i-th component of Z
(m)
n−1 by a factor αi for

i = 0, 1, . . . , k. Thus the Norseick’s transformation facilitates the change of step
size for a multistep method.


