
Chapter 1

Tensor Product Space

The purpose of this chapter is to provide some basic background

information.

• Hilbert Space

• Representation Theory

• Tensor Algebra

• Schmidt Decomposition and Singular Value Decomposition
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2 Hilbert Space

1.1 Hilbert Space

• When quantum theory was developed in the 1920s, it had a

strong influence on functional analysis. See [261] for an overview

of the history.

• The quantum information theory appeared much later and the

matrices are very important in this subject.

• The basic postulate of quantum mechanics is about the Hilbert

space formalism.

⋄ To each quantum mechanical system is associated a complex

Hilbert space.

⋄ The (pure) physical states of the system correspond to unit

vectors of the Hilbert space.

• As the basic preparation, we shall describe the general notion of

Hilbert space first before moving into the specifics for quantum

mechanics.
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Inner Product

• Given a vector spaceX over the complex field C (or other field),

we say that it is equipped with an inner product

〈·, ·〉 : X ×X → C

if the inner product satisfies the following axioms:

1. 〈x,y〉 = 〈y,x〉.
2. 〈x + y, z〉 = 〈x, z〉 + 〈y, z〉.
3. 〈αx,y〉 = α〈x,y〉. (Conjugate linear in x)1

4. 〈x,x〉 ≥ 0 and 〈x,x〉 = 0 if and only if x = 0.

⋄ The quantity

‖x‖ := 〈x,x〉1
2 (1.1)

naturally defines a vector norm on X .

⋄ Two vectors x and y are said to be orthogonal, denoted by

x ⊥ y, if 〈x,y〉 = 0.

1Such an arrangement is somewhat unconventional, but is easier for transition to the notion of density matrix

in quantum mechanics. Note that the inner product is linear in y.
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• Some basic facts:

⋄ (Cauchy-Schwarz Inequality) For all x,y in an inner product

space,

|〈x,y〉| ≤ ‖x‖‖y‖. (1.2)

Equality holds if and only if x = αy or y = 0.

⋄ (Parallelogram Law) With the induced inner product norm,

‖x + y‖2 + ‖x− y‖2 = 2‖x‖2 + 2‖y‖2. (1.3)

⋄ (Continuity) Suppose that xn → x and yn → y. Then

〈xn,yn〉 → 〈x,y〉.
⋄ Note that these geometric properties follow from the alge-

braic definition of inner product.

• A complete inner product space is called a Hilbert space.

⋄ A metric space X is complete if every Cauchy sequence in

X converges to a point in X .

⋄ The set Q of rational numbers is a vector space over itself.

The sequence xn+1 = xn
2 + 1

xn
is Cauchy in Q. However,

it does not converge towards any rational limit. Why and

what does this mean?
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Orthogonal Complements

• Given any subset S in an inner product space X , the set

S⊥ := {y ∈ X|y ⊥ x for every x ∈ S} (1.4)

is called the orthogonal complement of S.

⋄ S⊥ is a closed subspace.

⋄ S ⊂ (S⊥)⊥.

⋄ (S⊥)⊥ is the smallest closed subspace containing S.

• We say that X is the direct sum of two subspaces M and

N , denoted by M = M
⊕

N , if every x ∈ X has a unique

representation of the form x = m + n where m ∈ M and

n ∈ N .

⋄ The Classical Projection Theorem: Let M be a closed sub-

space of a Hilbert space H . Corresponding to every x ∈
H ,

⊲ There exists a unique m0 ∈ M such that ‖x − m0‖ ≤
‖x−m‖ for all m ∈M .

⊲ A necessary and sufficient condition thatm0 be the unique

best approximation of x in M is that x−m0 ⊥M .

⋄ If M is a closed linear subspace of a Hilbert space H , then

H =M
⊕

M⊥.

• Given a vector x0 ∈ H and a closed subspace M , the unique

vector m0 ∈M such that x0 −m0 ∈M⊥ is called the orthog-

onal projection of x0 onto M .
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Gram-Schmidt Orthogalization Process

• Any given sequence (finite or infinite) {xn} of linearly indepen-

dent vectors in an inner product space X can be orthogonalized

in the following sense.

⋄ There exists an orthonormal sequence {zn} in X such that

for each finite positive integer ℓ,

span{x1, . . . ,xℓ} = span{z1, . . . , zℓ}. (1.5)

⋄ Indeed, the sequence {zn} can be generated via the Gram-

Schmidt process.

z1 :=
x1

‖x1‖
,

wn := xn −
n−1∑

i=1

〈zi,xn〉zi, n > 1,

zn :=
wn

‖wn‖
, n > 1.

• Additional insights:

⋄ What if the sequence cannot be enumerated?

⋄ Show that in finite dimensional space, the Gram-Schmidt

process is equivalent to that any full column rank matrix

A ∈ Rn×m can be decomposed as

A = QR (1.6)

where Q ∈ Rn×m, QTQ = Im, and R ∈ Rm×m, R is upper

triangular.
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Orthogonal Polynomials

• One can apply the Gram-Schmidt procedure with respect to a

variety of inner products in the space C1[a, b] on the sequence

of polynomials {1, x1, x2, . . .} to produce families of orthogonal

polynomials.

• Six popular orthogonal polynomial families:

⋄ Gegenbauer: [−1, 1], ω(x) = (1− x2)λ−
1
2 , λ is any number

≥ −1
2.

⋄ Hermite: (−∞,∞), ω(x) = e−x
2
.

⋄ Laguerre: [0,∞), ω(x) = e−xxα, α is number ≥ −1.

⋄ Legendre: Needed in Gaussian quadrature.

⋄ Jacobi: [−1, 1], ω(x) = (1− x)a(1 + x)b, a any irrational or

ration ≥ −1.

⋄ Chebyshev: (−1, 1), ω(x) = (1− x2)±
1
2 .

• Show that the resulting orthonormal polynomials {zn} satisfy

a recursive relationship of the form

zn(x) = (anx + bn)zn−1(x)− cnzn−2(x), n = 2, 3, . . . (1.7)

where the coefficients an, bn, cn can be explicitly determined.

• Show that the zeros of the orthonormal polynomials are real,

simple, and located in the interior of [a, b].
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1.2 Representation Theory

• Depending on the applications, a Hilbert space can have two

kinds of representations.

⋄ Sometimes, due to issues such as feasibility, it is necessary

to approximate a desired target vector.

⊲ This leads to the Fourier series.

⊲ In a Hilbert space, the most fundamental notion of ap-

proximation is the projection.

⋄ Any bounded linear functional f : H → F, where F is the

field over which the vector space is defined, can uniquely be

represented by an element in H .

⊲ This is the so called Riesz representation theorem.

⊲ One can thus use the bounder linear functional to repre-

sent a Hilbert space H and vise versa.



Tensor Product Space 9

Approximation

One of the most fundamental optimization question is as follows:

• Let x0 represent a target vector in a Hilbert space H .

⋄ The target vector could mean a true solution that is hard to

get in the abstract space H .

• Let M denote a subspace of H .

⋄ Consider M as the set of all computable, constructible, or

reachable (by some reasonable means) vectors in H .

⋄ M shall be called a feasible set.

• Want to solve the optimization problem

min
m∈M

‖x0 −m‖. (1.8)
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Projection Theorem

• A necessary and sufficient condition that m0 ∈ M solves the

above optimization problem is that

x0 −m0 ⊥M. (1.9)

⋄ The minimizer m0 is unique, if it exists.

⋄ The existence is guaranteed only if M is closed.

• How to find this minimizer?

⋄ Assume that M is of finite dimension and has a basis

M = span{y1, . . . ,yn}. (1.10)

Write

m0 =
n∑

i=1

αiyi. (1.11)

Then α1, . . . , αn satisfy the normal equation

〈yj,x0 −
n∑

i=1

αiyi〉 = 0, j = 1, . . . n. (1.12)

⋄ In matrix form, the linear system can be written as



〈y1,y1〉 〈y1,y2〉 . . . 〈y1,yn〉
〈y2,y1〉

...
. . .

...
〈yn,y1〉 〈yn,yn〉







α1

α2

...
αn


 =




〈y1,x0〉
〈y2,x0〉

...
〈yn,x0〉


 . (1.13)

⊲ If the basis {y1, . . . ,yn} are orthonormal, then trivially

αi = 〈yi,x0〉. (1.14)
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⋄ What can be done if M is not of finite dimension?

⋄ IfM is of codimension n, i.e., if the orthogonal complement

of M has dimension n, then a dual approximation problem

can be formulated.
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Schauder Basis versus Hamel Basis

• Conventionally, it is known that every finitely generated vector

space has a basis. But what about vector spaces that are not

finitely generated, such as C[0, 1]?

• A vector space V is said to be spanned by an infinite set of

vectors {v1,v2, . . .}, if each vector v ∈ V is a finite linear

combination ai1vi1 + . . . + ainvin of the vi’s.

• A set {v1,v2, . . .} is a basis for V if and only if every element

of V can be be written in a unique way as a finite linear com-

bination of elements from the set.

• Actually, the notation {v1,v2, . . .} for an infinite set is also

misleading because it seems to indicate that the set is countable.

• Want to allow the possibility that a vector space may have an

uncountable basis.

⋄ It is more sensible to use notation such as {vλ|λ ∈ Λ},
where Λ is some unspecified indexing set.

⋄ What is the basis of R∞? What is the basis of ℓ2 ⊂ R∞?

• Every vector space has a basis.

⋄ Need to employ Zorn’s Lemma, i.e., any nonempty partially

ordered set in which every chain has an upper bound con-

tains at least one maximal element.

⋄ Such a basis is called a Hamel basis.
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Fourier Series

• Over a Hilbert space, there is a confusing but more useful notion

of“spanning the space”, called the Schauder basis.

⋄ A maximal orthonormal subset S of a Hilbert space H is

called a complete orthonormal basis.

⊲ S may not be countable, but its existence is guarantee by

Zorn’s Lemma.

• If S is any orthonormal subset (not necessarily maximal) of H

and x ∈ H , then

⋄ 〈z,x〉 is nonzero for at most a countable number of z ∈ S.

⋄ (Bessel’s Inequality)
∑

z∈S
|〈z,x〉|2 ≤ ‖x‖2. (1.15)

• The convergent series

F(x) :=
∑

z∈S
〈z,x〉z (1.16)

guaranteed by Bessle’s inequality is called the Fourier series of

x in H .

⋄ F(x) belongs to the closure of span{S}.
⋄ x− F(x) ⊥ span{S} (and hence its closure).

⋄ When will an orthonormal subset S generate a Hilbert space?
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• If S is a maximal orthonormal subset of H , then any x ∈ H

can be identified via a square-summable sum

x =
∑

z∈S
〈z,x〉z. (1.17)

⋄ The Fourier coefficients uniquely characterize x.

• A Hilbert space H has a countable orthonormal basis if and

only if H has a countable dense subset if and only if every

orthonormal basis for H is countable.

⋄ Such a space is said to be separable.

• Examples:

⋄ The subspace of polynomials is dense in L2[−1, 1].

⋄ The Legendre polynomials, i.e., the orthonormal sequence

zn(x) =

√
2n + 1

2

(−1)n

2nn!

dn

dxn
(1− x2)n (1.18)

is complete in L2[−1, 1].

⋄ The trigonometric system
{
1, eix, e−ix, e2ix, e−2ix, e3ix, e−3ix, . . .

}

is a Schauder basis for the space Lp([0, 2]) for any 1 < p <

∞, but is not a Schauder basis for L1([0, 2]).

• So, what is the fundamental difference a Hamel basis and a

Schauder basis?
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1.3 Tensor Algebra

• Before any physical mechanism is applied, tensor product is a

mathematical way to describe the interaction of every elements

in one vector to every elements in another vector.

⋄ Such a simultaneous interaction is the basic notion of a bi-

partite quantum system whose subsystems are entangled.

• The interaction is in the simplest form of a bilinear map, but

can be interpreted in many different ways.

• You could plug in numbers to see what these bilinear map does

if the ”actions” are multiplications, but the theory applies to

any kind of bilinear maps. Do abstract thinking, instead.

• Do not confuse the tensor product with the Kronecker product.

⋄ Although they carry the same amount of information, they

appear in different forms.
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Tensor Product

• Given two Hilbert spaces H1 and H2 with complete orthonor-

mal basis states {ei} and {fj}, respectively, the tensor product
space H1 ⊗ H2 is defined by

H1 ⊗ H2 := {
∑

i,j

ui ⊗ vj|ui ∈ H1,vj ∈ H2}. (1.19)

⋄ The tensor product ⊗ represents only an bilinear relation-

ship applied to the Cartesian product H1 × H2.

⊲ No other strings, physically or mathematically, are as-

sumed.

⋄ The summation is formal over any index subset with finite

support2.

• An algebra can be defined on H1 ⊗ H2 to make it a vector

space.

⋄ What is an algebra?

• An inner product can also be defined via the relationship

〈x⊗ y, z⊗w〉 := 〈x, z〉〈y,w〉. (1.20)

⋄ It might be needed to carry out a topological completion3 to

make H1 ⊗ H2 a Hilbert space with {ei ⊗ fj} as the basis.

• What is the geometry of a unit circle in H1 ⊗ H2?

2For practical reason, we are assuming the Hilbert spaces are separable, but the concept can be generalized.
3Not needed for finite dimensional Hilbert spaces.
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Outer Product

• Suppose that an element in a Hilbert space is represented by a

column vector whose entries are the coordinates with respect

to a given basis. Then we can think of the tensor product

a⊗b as the outer product of column vectors a and b, that is4,

a⊗ b = ab⊤ which is a matrix of size m× n.

⋄ The notion of outer product can readily be generalized to

higher-order tensors by simply adding the list of indices.

• Conventionally, entries of a matrix are enumerated by stack-

ing columns together as a 1-D array. Thus, it is suggested to

enumerate the composite basis in the order as

e1 ⊗ f1, e2 ⊗ f1, . . . , e1 ⊗ f2, e2 ⊗ f2, . . . , e1 ⊗ f3, . . . . (1.21)

⋄ This ordering is consistent with the vectorization of the outer

product.

• Any element ψ ∈ H1 ⊗ H2 can be written as

ψ =
∑

i,j

cjiei ⊗ fj. (1.22)

That is, any element ψ in a bipartite system can be represented

by a matrix C = [cji].

⋄ ‖ψ‖ :=
∑

i,j |cij|
2.

⋄ We can also write ψ = vec(C).

4It is confusing, but sometimes the outer product over complex space is defined to be a ⊗ b = ab
⊤

. By doing

so, we lose the bilinearity of ⊗. To avoid the confusion, we shall use Dirac’s bra-ket notation |x〉 〈y| to denote the

conjugated outer product.
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Linear Operators

• Any linear operator

T : H1 ⊗ H2 → Ĥ1 ⊗ Ĥ2

is necessarily an order-4 tensor.

⋄ First, its action on the basis element ei ⊗ fj is given by

T (ei ⊗ fj) =
∑

s,t

τstijês ⊗ f̂t. (1.23)

⋄ Employ the multi-index notation I = (s, t) and J = (i, j).

Identify ÊI := ês ⊗ f̂t and EJ := ei ⊗ fj. Then (1.23) can

be expressed as

T (EJ ) =
∑

I
τIJ ÊI , (1.24)

which is precisely the conventional matrix representation of

a linear transformation.

• If C = [cij] =
∑

J cJEJ , then

T (C) =
∑

J
cJT (EJ ) =

∑

I
(
∑

J
τIJ cJ )ÊI . (1.25)

⋄ This operation defines a tensor-to-matrix multiplication

which generalizes the conventional matrix-to-vector multi-

plication.
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Tensor Product of Operators

• Given two linear operatorsA and B onH1 andH2, respectively,

want a special linear operator A⊗ B on H1 ⊗ H2 such that

(A⊗ B)(ei ⊗ fj) := (Aei)⊗ (Bfj), (1.26)

for all basis states {ei} and {fj}.
• If A and B are represented by matrices A and B, respectively,

then the matrix representation of A ⊗ B is precisely the Kro-

necker product A⊗ B of A and B.

⋄ Write Aei =
∑

s asiês and Bfj =
∑

t btj f̂t. Then, by the

condition (1.26), we have

(Aei)⊗ (Bfj) =
∑

s

∑

t

asibtj(ês ⊗ f̂t). (1.27)

⋄ With respect to the outer product ordering (1.21), the ma-

trix representation of the order-4 tensor with τstij := [asibtj]

is a block matrix whose (i, j) block is made of



a1ib1j a1ib2j a1ib3j . . .

a2ib1j a2ib2j a2ib3j . . .

a3ib1j a3ib2j a3ib3j . . .
... ...




⊲ If A and B are expressed in columns, then the block is

precisely ai ⊗ bj.

⊲ Block size = (row# of A)× (row# of B).

⊲ There are (column# of A)× (column# of B) blocks.



20 Tensor Algebra

Tensor Product versus Kronecker Product

• The same notation ⊗ has been used for different meanings:

⋄ Physicists use it to denote the tensor product. That is,

a⊗ b := ab⊤, (1.28)

which is a matrix. (Without the complex conjugation!)

⋄ Mathematicians use it to denote the Kronecker product.

That is,

a⊗ b := [a1b1, a1b2, . . . , a2b1, a2b2, . . .]
⊤, (1.29)

which a long vector.

• What if in higher-dimensional spaces?

⋄ The tensor product can be generalized naturally to higher

order tensor products by simply adding indices to the right.

⋄ The generalization of the Kronecker product will involve

nasty multiplications.

• Mathematicians sometime prefer to keep the Kronecker notation

and denote tensor/outer product by ◦. See [399].
⋄ Thus

a ◦ b := ab⊤,

vec(a ◦ b) = b⊗ a, (1.30)

a⊗ b = vec(ba⊤).

• In quantum mechanics, there is this complex outer product:

|a〉 〈b| := ab∗. (1.31)
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Lexicographic Ordering

• Sometimes it is easier to systematically enumerate the basis in

the lexicographic ordering :

e1 ⊗ f1, e1 ⊗ f2, . . . , e2 ⊗ f1, e2 ⊗ f2, . . . . (1.32)

If an element ψ ∈ H1 ⊗ H2 is expressed in this ordering

ψ =
∑

i,j

dijei ⊗ fj, (1.33)

then D = C⊤. (Only a flip of indices. No practical meaning.)

• If the bases are ordered in this way, then the matrix represen-

tation of the order-4 tensor with τstij := [asibtj] is precisely



a11b11 a11b12 . . . a12b11 . . .

a11b21 a11b22 . . . a12b21
... ...

a21b11 a21b12 . . .

a21b21 a21b22 . . .
...



=



a11B a12B . . .

a21B a22B . . .
...




which can be effectively written as the Kronecker productA⊗B.

⋄ Check this out as an important exercise!

• We shall take advantage of the lexicographical ordering.
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B(H ) and Tr(A)

• The set of bounded linear operators H → H is denoted by

B(H ).

⋄ For quantum computation, we are particularly interested in

some special subsets of B(H ):

⊲ Density matrices for representing mixed states.

⊲ Unitary transformation for representing reversible com-

putation.

• Given A ∈ B(H ) and an orthonormal Schauder basis {ei},
define the trace of A by

Tr(A) :=
∑

i

< ei,Aei > . (1.34)

⋄ The summation could be divergent.

⋄ If H is finite-dimensional, then Tr(A) coincides with the

definition of the trace of the matrix representation of A.
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k-fold Tensor Product

• Given a Hilbert space H , the k-fold tensor product is denoted

by

H
⊗k := H ⊗ . . .⊗ H . (1.35)

• Similarly, if A ∈ B(H ), then

A⊗k := A⊗ . . .⊗A ∈ B(H ⊗k). (1.36)
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Adjoint Operator

• If A : H → K is a linear operator, then there exists a unique

operator, denoted by A∗, such that the adjoint equation

〈Ah,k〉K = 〈h,A∗k〉H (1.37)

is satisfied for all h ∈ H and k ∈ K .

⋄ The notion that A∗ is the conjugate transpose of A is not

always true.

⋄ How to find A∗ in general?

⋄ See [287] for an interesting discussion on the adjoint for non-

linear operators.

• An operator A ∈ B(H ) is said to be positive (or positive

semi-definite) if and only if 〈h,Ah〉 ≥ 0 for all h ∈ H .

⋄ A positive operatorA over the complex field is automatically

self-adjoint because

〈h,Ah〉 = 〈h,Ah〉 = 〈Ah,h〉 = 〈h,A∗h〉

⋄ In the real-valued case, it is required to add the condition of

“symmetry” specifically.

⋄ Will use the notation A ≥ 0 to denote a positive operator.



Tensor Product Space 25

Dirac Notation

• Will begin to interchange the ket notation |x〉 with the column

vector x in a Hilbert space H .

• The bra notation 〈x| can be thought of as the row vector x∗,
but more precisely it should be considered as a linear functional

acting on H .

⋄ By the Riesz representation theorem, a bounded linear func-

tional f : H → C acting on an element h can be denoted

by

f(h) = 〈z|h〉 (1.38)

for some z ∈ H .

⋄ It is common to suppress the vector or functional from the

bra-ket notation and only use a label inside the typography

for the bra or ket.
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Finiteness versus Infiniteness

• In quantum mechanics, a quantum state is typically represented

as an element of a complex Hilbert space, for example, the

infinite-dimensional vector space of all possible wave functions.

• For quantum computation, we shall consider only finite dimen-

sional spaces over complex field.

⋄ With respect to a given basis, such a space is isomorphic to

Cn.

⋄ Current technology even limits us to very low dimensions.
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1.4 Schmidt Decomposition and Singular Value Decomposition

• The theory is applicable to bipartite system only.

• Both decompositions are equivalent in finite dimensional sys-

tems.

• Generalization to infinite dimensional space is not always pos-

sible.

⋄ Unlike in finite dimensions, it is possible that a bounded

self-adjoint operator on a complex Hilbert space may have

no eigenvalues.

• The proofs are fundamentally different.
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Singular Value Decomposition

• The singular value decomposition (SVD) is a matrix factoriza-

tion that serves both as the first computational step in many

numerical algorithms and as the first conceptual step in many

theoretical studies.

• Given A ∈ Rm×n (m ≥ n), the image of the unit sphere in Rn

under A is a hpyerellipse (of dimension n) in Rm.

⋄ The unit vectors ui ∈ Rm in the directions of the princi-

pal semi-axes of the hyperellipse are called the left singular

vectors of A.

⋄ The unit vectors vi ∈ Rn in the directions of the preimage

of the principal semi-axes of the hyperellipse are called the

right singular vectors of A.

⋄ The lengths σi of the principal semi-axes of the hyperellipse

are called the singular values of A.

• The above geometric relationships are mathematically equiva-

lent to:

Avi = σiui. (1.39)

⋄ It is clear that all ui, i = 1, . . . ,m, are mutually orthogonal.

⋄ It will be shown that all vi, i = 1, . . . n, are also mutually

orthogonal.

• The concept holds in the complex spaces, but the geometry is

not obvious.

⋄ How does the unit circle in C2 look like?
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• Recall that A∗A ∈ Cn×n is hermitian and positive semi-definite.

⋄ A∗A has a complete set of orthonormal eigenvectors.

⋄ All eigenvalues of A∗A are nonnegative.

⋄ Denote positive eigenvalues of A∗A by σ21 ≥ . . . ≥ σ2r > 0.

⊲ It can be proved r = rank(A).

⋄ Denote

A∗Avi = σ2ivi, i = 1, . . . , n.

• Some important observations:

⋄ Matrices A∗A and AA∗ have the same set of positive eigen-

values.

(AA∗)Avi = σ2iAvi.

⋄ The vector ui := Avi/σi is of unit length.

⋄ {u1, . . . ,ur} are orthonormal eigenvector of AA∗.

⋄ Can choose {ur+1, . . . ,um} to be orthonormal eigenvectors

of AA∗ with eigenvalue 0. (How to achieve this?)
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• The singular value decomposition of A:

⋄ Denote



V := [v1, . . . ,vn] ∈ Cn×n

U := [u1, . . . ,um] ∈ Cm×m

Σ := diag{σ1, . . . , σr} ∈ Rr×r.

⋄ Any A ∈ Cm×n can be decomposed as a triplet

A = U

[
Σ 0

0 0

]
V ∗. (1.40)

⊲ Columns of U and V are orthonormal.

⊲ Can also expressed as

A =
∑

i

σiuiv
∗
i . (1.41)

X How to compromise the notation issue, uiv
∗
i = ui⊗vi?

⋄ Write U = [U1, U2], V = [V1, V2], then

U∗AV =

[
U∗
1

U∗
2

]
A[V1, V2] =

[
U∗
1AV1 U∗

1AV2
U∗
2AV1 U∗

2AV2

]
.

⊲ Note that 



AV2 = 0,

U∗
2AV1 = U∗

2U1Σ = 0,

U∗
1AV1 = Σ,

by the choice of U .
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Schmidt Decomposition

• Given two Hilbert spaces H and K , assume that the tensor

product space H ⊗ K is complete. Then any unit vector

ψ ∈ H ⊗ K can be written in the form

ψ =
∑

k

σkhk ⊗ kk (1.42)

where the vectors hk ∈ H and kk ∈ K are orthonormal,

σk > 0 and
∑

k σ
2
k = 1.

⋄ The number of terms in the summation, called the Schmidt

number, is finite and ψ dependent. (Rank of a matrix ψ?)

• The proof is in the spirit as the SVD:

⋄ Think of the representation ψ =
∑

i,j cijei ⊗ fj.

⋄ Let C = UΣV ∗ be the (full) SVD of C.

⊲ ‖C‖F = 1, so
∑

i σ
2
i = 1.

⋄ Write U = [ust] and V = [vµν]. Then

ψ =
∑

i,j

(
r∑

k=1

σkuikvjk)ei ⊗ fj.

⋄ Suffices to define
{

hk :=
∑

i uikei,

kk :=
∑

j vjkfj.

• Is there a generalization of SVD to higher dimensional tensors?
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