
Chapter 2

Basic Principles in Quantum

Mechanics

The purpose of this chapter is to offer a glimpse into some basic

quantum mechanics. We shall introduce concepts on

• Copenhagen interpretation

• Density matrix and its statistical meaning

• Entanglements

• Separability

• Partial trace

• Purification

Only some fundamental ideas are outlined as this subject has been

and will continue to be extended into much deeper research across

multiple academic fields. On the other hand, we do not need all

these notions per se when coming down to quantum computation.
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2.1 Copenhagen Interpretation

• There are many ways to interpret quantum mechanism.

⋄ These are different ways of relating the wave functions to

experimental results and our fundamental “belief” of nature.

⋄ Some of the interpretations even conflict with others.

⋄ All are attempts to explain mathematically three revolution-

ary principles:

⊲ Quantized properties.

⊲ Particles of light.

⊲ Waves of matter.

• According to the Copenhagen interpretation,

⋄ Physical systems generally do not have definite properties

prior to being measured.

⋄ Quantum mechanics can only predict the probability distri-

bution of a given measurement’s possible results.

⋄ The act of measurement affects the system, causing the set

of probabilities to reduce to only one of the possible values

immediately after the measurement. This feature is known

as wave function collapse.
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Postulate 1 – Pure and Mixed States

• To each quantum mechanical system is associated a complex

Hilbert space H .

⋄ A pure state in quantum mechanics is represented in terms

of a unit vector |ψ〉 in H . (wave function)

⊲ Will consider |ψ〉 ≡ |φ〉 if |ψ〉 = c |φ〉 and |c| = 1.

⋄ Mixed states are described by density matrices.

⊲ A density matrix is a positive operator of unit trace on

the Hilbert space H .

X If the space has a basis consisting of eigenvectors, then

the sum of eigenvalues is 1.

⊲ The density matrix for a pure state |ψ〉 is the rank-1

matrix |ψ〉 〈ψ|.
X The notion of a “matrix” should be interpreted as a

linear operator in the sense of a projector

(|ψ〉 〈ψ|) |z〉 = 〈ψ|z〉 |ψ〉 . (2.1)

X The value of the phase c disappears from density ma-

trix representation.

⋄ Why do we need the notion of density matrices?
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Postulate 2 – Observables

• Every measurable physical quantity, say, of a, is called an ob-

servable and is described by a Hermitian operator A acting on

the Hilbert space H .

⋄ A acts like a statistical operator.

⋄ When making a measurement of the associated physical

quantity a, we obtain one of the eigenvalues λj of A.

⋄ Immediately after the measurement the state undergoes an

abrupt change to the eigenstate
∣∣φj

〉
of the observed eigen-

value.

• Suppose that the system is in state |ψ〉 and A is measured.

⋄ Expand |ψ〉 in terms of eigenstate basis of A,

|ψ〉 =
∑

j

cj
∣∣φj

〉
.

⊲ Assume that the probability of collapsing to the eigen-

state
∣∣φj

〉
is given by |cj|2.

⋄ Therefore, the expectation value of a after many measure-

ments is

〈A〉 :=
∑

j

λj|cj|2 = 〈ψ|A |ψ〉 . (2.2)

• How are these measurements realized on a quantum machine?
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Postulate 3 – Schröndinger Equation

• The evolution of a state |ψ〉 in time is governed by the (general)

Schrödinger equation

ıℏ
∂ |ψ〉
∂t

= H |ψ〉 , (2.3)

⋄ ℏ is a physical constant known as the Planck constant.

⋄ H is a Hermitian operator (matrix) corresponding to the

energy of the system and is called the Hamiltonian.

• In the overly simplified case when H is time independent, then

|ψ(t)〉 = e
−ıHt
ℏ |ψ(0)〉 . (2.4)

In general,

⋄ |ψ〉 = |ψ(r, t)〉.
⋄ H = − ℏ2

2m∇2 + V (r, t).

• Solving the Schröndinger equation together with its interpreta-

tion and its other applications, say, in the electronmagnatism

theory is beyond the scope of this course.

• Suffice to say that the most important concept is that

|ψ(t)〉 = U(t) |ψ(0)〉 . (2.5)

⋄ U(t) is unitary.
⊲ Show that ifH is Hermitian, then−ıH is skew-Hermitian

and e−ıH is unitary.

⋄ The length of |ψ(t)〉 is invariant.
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2.2 Density Matrix and Its Statistical Meaning

• Convex hull of pure states

• Single qubit and Bloch sphere

• Statistical Ensembles
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Convex Hull of Pure States

• The set Ω of density matrices over a Hilbert space H is convex.

⋄ A convex combination of density matrices remains positive

with unit trace.

• The extreme points of Ω are the pure states.

⋄ Recall that ρ ∈ Ω is an extreme point if a strict convex

combination ρ = λρ1 + (1 − λ)ρ2 with ρ1, ρ2 ∈ Ω and

0 < λ < 1 is possibly only if ρ1 = ρ2 = ρ.

⋄ The Schmidt decomposition shows that an extreme point

must be a pure state.

⋄ Remains to argue that a pure state is an extreme point.

⊲ Assume ρ = λρ1 + (1− λ)ρ2 with ρ1, ρ2 ∈ Ω.

⊲ Since ρ = |ψ〉 〈ψ|, ρ2 = ρ.

⊲ Can write

ρ = λρρ1ρ + (1− λ)ρρ2ρ.

and, hence, Tr(ρρiρ) = 1 for i = 1, 2.

⊲ By the Cauchy-Schwartz inequality, we should have

Tr(ρρiρ) =< ρ, ρiρ >=< ρ, ρi >≤ ‖ρ‖F‖ρi‖F ≤ 1.

⊲ The equality holds if and only if ρ = ciρi for some scalars

ci. Together, we see that ci = 1 and ρ = ρ1 = ρ2.

• Any density matrix ρ can be written as a convex combination

ρ =
∑

i

µi |ψi〉 〈ψi| ;
∑

i

µi = 1; µi ≥ 0, (2.6)

of some pure states |ψi〉.
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Bloch Sphere

• Consider the Hilbert space C2.

⋄ Denote the standard basis e1 and e2 by |0〉 and |1〉, or |↓〉
and |↑〉, respectively.

⋄ A qubit is a quantum superposition of |0〉 and |1〉, i.e.,

|ψ〉 = x1 |1〉 + z |0〉 (2.7)

where x1 ∈ R, z ∈ C, and x21 + |z|2 = 1. (Why is x1 ∈ R?)

⋄ Write z = x2 + ıx3. The set of all pure states of a qubit is

conveniently visualized as the sphere in R3, called the Bloch

sphere.
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Pauli Matrices

• Define the Pauli matrices

σx :=

[
0 1

1 0

]
; σy :=

[
0 −ı
ı 0

]
; σz :=

[
1 0

0 −1

]
; (2.8)

Then any 2× 2 density matrix ρ can be expressed as

ρ =
1

2
(I2 + x · σ) = 1

2

[
1 + x3 x1 − ıx2
x1 + ıx2 1− x3

]
(2.9)

with some x ∈ R3 and ‖x‖ ≤ 1.

⋄ Rewrite |ψ〉 〈ψ| in (2.7) in the form of (2.9).

• Therefore, in the case of C2, all pure states are on the Bloch

sphere, whereas all density matrices are in the Bloch ball.

⋄ What is this to do with the previous theory?
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Statistical Ensembles

• Describing a quantum state by its density matrix is a fully gen-

eral alternative formalism to describing a quantum state by its

state vector (its ”ket”) or by a statistical ensemble of kets.

⋄ Use density matrices for calculations involving mixed states.

⋄ Use kets for calculations involving only pure states.

• Suppose that a physical quantityA is measured at a mixed state

where the probability of appearing at the state |ψi〉 is µi.
⋄ |ψi〉 are not necessarily orthogonal.

⋄ The portion of the observable a at state |ψi〉 is the projection
component 〈ψi|A |ψi〉.

⋄ The expected value of the observable a is

〈A〉 =
∑

i

µi 〈ψi|A |ψi〉 (2.10)

• Thus we are motivated to represent that mixed state by the

density matrix

ρ =
∑

i

µi |ψi〉 〈ψi| ;
∑

i

µi = 1; µi ≥ 0. (2.11)

⋄ Can write 〈A〉 = Tr(Aρ). (Compare with (2.2))

• The density matrix representation (2.11) does not need |ψi〉 to
be mutually orthonormal.
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2.3 Entanglement

• Composite systems

• Entanglement of density matrices
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Composite Systems

• A bipartite system is described by the tensor product Hilbert

space H1 ⊗ H2.

⋄ Recall from (1.33) that a state inH1⊗H2 can be represented

by a matrix D. (In lexicographically ordered basis)

⋄ A pure state |ψ〉 is where ‖D‖F =
∑

i,j |dij|
2 = 1.

• If a pure state |ψ〉 is expressible as

|ψ〉 = |ψ1〉 ⊗ |ψ2〉 , (2.12)

with pure states |ψi〉 ∈ Hi, i = 1, 2, respectively, then the

pure state |ψ〉 is said to be separable ; otherwise, it is called

entangled.

⋄ A pure state in the composite system can be entangled.

⋄ A finite dimensional pure state can always be decomposed

as a linear combination of separable states.

⊲ Recall the Schmidt decomposition in Section 1.4.
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A 2-Qubit System: C2 ⊗ C2

• A natural (binary) basis is {|00〉 , |01〉 , |10〉 , |11〉}.
⋄ The corresponding matrix representations are:[

1 0

0 0

]
,

[
0 1

0 0

]
,

[
0 0

1 0

]
,

[
0 0

0 1

]
.

• Consider the state

|ψ〉 = 1√
2
(|00〉 + |11〉)

⋄ Can consider |ψ〉 =
[

1√
2

0

0 1√
2

]
. (Not a density matrix!)

⋄ Is |ψ〉 separable?
|ψ〉 = (c1 |0〉 + c2 |1〉)⊗ (d1 |0〉 + d2 |1〉)

= c1d1 |00〉 + c1d2 |01〉 + c2d1 |10〉 + c2d2 |11〉 .
⊲ Find the coefficients.

• Bell basis: 



|Φ+〉 := 1√
2
(|00〉 + |11〉),

|Φ−〉 := 1√
2
(|00〉 − |11〉),

|Ψ+〉 := 1√
2
(|01〉 + |10〉),

|Ψ−〉 := 1√
2
(|01〉 − |10〉).

⋄ Is an orthonormal basis.

⋄ The Bell basis can be obtained from the binary basis via

a unitary transformation. Find the unitary transformation

explicitly.
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Bipartite Density Matrices

• Density matrices in a bipartite system are order-4 tensor oper-

ators.

• Do not confuse the density matrix of a mixed state with the

matrix representation of a state.
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Representing a Bipartite Density Matrix

• Consider finite dimensional cases, so H1 ≡ Cm and H2 ≡ Cn.

⋄ Identify states |ψ〉 ∈ Cm ⊗ Cn by matrices D ∈ Cm×n.

⋄ The density matrix corresponding to a pure state D is a

linear operator T ∈ B(Cm×n) satisfying the relationship

T (Z) = 〈D,Z〉D. (2.13)

• The linear operator T should be regarded as an order-4 tensor

in Cn×m×n×m whose matrix representation is in Cnm×nm.

⋄ With respect to the basis {ei ⊗ fj} in lexicographic order,

the density matrix of a pure state D is of the form

T =




d11d11 d12d11 . . . d1nd11 . . . dmnd11
d11d12 d12d12 . . . d1nd12 . . . dmnd12

... ...

d11d1n
d11d21

...

d11dmn d12dmn . . . dmndmn




∈ Cmn×mn,

(2.14)

⊲ Obviously T (ei ⊗ fj) = dijD.

⊲ Place dijD at the (i, j)-column in the matrix representa-

tion T according to the lexicographical order.

⊲ Can write T =
∣∣vec(D⊤)

〉 〈
vec(D⊤)

∣∣ or, more confus-

ingly, T = vec(C) ◦ vec(C), where ◦ is the complex

outer product.
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Density Matrices of Mixed States

• As expected, Tr(T ) = 1 and that T is positve.

• The mixed state ρ in the bipartite system is an order-4 density

matrix that can be written in the form

ρ =
∑

i

µivec(Ci) ◦ vec(Ci);
∑

i

µi = 1; µi ≥ 0, (2.15)

where each Ci represents a pure state.

⋄ Since ρ ∈ Cmn×mn,(2.15) can be cast as a spectral decom-

position of ρ.

⋄ A total of mn terms in the summation is sufficient.

⋄ This decomposition is doable, but it is not the meaning of

separability.
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Separability

• We have talked about the separability of a unit state in a bi-

partite system.

• We have also talked about the Schmidt decomposition that a

unit state in a bipartite system can always be expressed as a

linear combination of separable unit states.

• The real challenge in the separability problem is to determine

whether a given mixed state density matrix ρ.
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Separation of General Operators

• In Section 1.3, we have already talked about a special operator

A⊗ B ∈ B(Cm ⊗ Cn), i.e.,

(A⊗ B)(ei ⊗ fj) := (Aei)⊗ (Bfj),
⋄ Suppose A and B are the matrix representations of A and

B, respectively.
⋄ With respect to the lexicographical ordering, the matrix rep-

resentation ofA⊗B is simply the Kronecker product A⊗B.

• Given a general matrix X ∈ Cmn×mn, when is it possible that

X = A⊗B

for some A ∈ Cm×m and B ∈ Cn×n?

⋄ Partition X = [Hij] as m×m blocks. Each Hij is of block

size n× n.

⋄ Introduce the notion of partial traces:{
Tr1(X) :=

∑m
j=1Hjj,

Tr2(X) := [TrHij].
(2.16)

⋄ Can check

⊲ Tr1(A⊗B) = Tr(A)B.

⊲ Tr2(A⊗B) = Tr(B)A.

⊲ Tr(A⊗B) = Tr(A)Tr(B).

⋄ The necessary condition is

Tr(X)X = Tr2(X)⊗ Tr1(X).

⊲ Check to see if the matrix
[

0 0 0 0

0 1 1 0

0 1 1 0

0 0 0 0

]
separable?
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Separation of Positive Operators

• If Ai ∈ B(Cm) and Bi ∈ B(Cn) are positive operators, then so

is

X :=

R∑

i=1

Ai ⊗ Bi. (2.17)

• Given a positive X ∈ B(Cm ⊗ Cn), when is it possible that X
can be separated as the sum in (2.17)?

⋄ There is no procedure to decide if X in the tensor product

space is separable or entangled. (This is an open research

problem.)

⋄ Part of the difficulty lies at the determination of the mini-

mum value R.

• If a separation is not possible, what is the best approximation

to the problem

min
Ai≥0;Bi≥0

‖X −
R∑

i=1

Ai ⊗Bi‖2F . (2.18)
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Structured Kronecker Product Approximation

• The Kronecker product often inherits structures from its factors

[397].

If B and C are





nonsingular
lower(upper) triangular
banded
symmetric
positive definite
stochastic
Toeplitz
permutations
orthogonal




, then B ⊗ C is





nonsingular
lower(upper) triangular
banded
symmetric
positive definite
stochastic
Toeplitz
permutations
orthogonal




.

⋄ Also, the LU , Cholesky, and QR factorizations of B ⊗ C

can easily be achieved from the corresponding factorizations

of B and C.

• Consider the converse problem:

⋄ Let ΩB ⊂ Rm1×n1 and ΩC ⊂ Rm2×n2 denote the subsets of

desired structures of factors, respectively.

⋄ Solve the constrained optimization problem:

min
B(ℓ)∈ΩB ;C

(ℓ)∈ΩC

‖A−
R∑

ℓ=1

B(ℓ) ⊗ C(ℓ)‖2F , (2.19)

⋄ Many interesting applications [220, 399], but hardly studied.
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Separation of Density Matrices

• Determine whether a given mixed state density matrix ρ in the

bipartite system can be decomposed as

ρ =
∑

i

piD(1)
i ⊗D(2)

i , (2.20)

⋄ {D(1)
i } and {D(2)

i } are density matrices of the subsystems

Cm and Cn, respectively

⋄ pi ≥ 0, and
∑

i pi = 1.

• A density matrix ρ is separable if and only if it can be decom-

posed as

ρ =
∑

k

θi(xkx
∗
k)⊗ (yky

∗
k) (2.21)

⋄ xk ∈ Cm and yk ∈ Cn are unit vectors.

⋄
∑

k θk = 1, θk ≥ 0.

• Need to argue the equivalence of (2.20) and (2.21).
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Convex Hull of Separable States

• A summation in the form of (2.21) is certainly separable because

xix
∗
i and yiy

∗
i are density matrices of pure states.

• Rewrite

D(1)
i =

m∑

s=1

λ(i)s x(i)
s x(i)

s

∗
,

D(2)
i =

n∑

t=1

ξ
(i)
t y

(i)
t y

(i)
t

∗
.

⋄ ‖x(i)
s ‖ = ‖y(i)

t ‖ = 1.

⋄ λ(i)s , ξ(i)t ≥ 0

⋄
∑

s λ
(i)
s =

∑
t ξ

(i)
t = 1.

• Upon substitution,

ρ =
∑

i

pi

m∑

s=1

λ(i)s

n∑

t=1

ξ
(i)
t (x(i)

s x(i)
s

∗
)⊗ (y

(i)
t y

(i)
t

∗
). (2.22)

⋄ piλ(i)s ξ(i)t ≥ 0.

⋄ Check to see that
∑

i,s,t

piλ
(i)
s ξ

(i)
t = 1. (2.23)

⋄ Check to see that the terms in the summation can be re-

named in a serial order.

• Note that the convex hull is of the operators, not of the states.
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Entangled Bipartite Low Rank Approximation

• Given positive definite (PD) matrix ρ ∈ Cmn×mn with unit

trace,

⋄ Find

⊲ Complex unit vectors xr ∈ Cm, yr ∈ Cn

⊲ Nonnegative real number λr ∈ R+ with unit sum

⋄ Such that

‖ρ−
R∑

r=1

λr(xrx
∗
r)⊗ (yry

∗
r)‖2F , (2.24)

is minimized.

• This is an optimization of real-valued functions over complex

variables.

⋄ Conventional calculus is not enough to address the derivative

information.

⋄ Employ the so called Wirtinger calculus. (Another research

problem!)
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2.4 Purification

• This is an important process, but we have to be brief to stay

focused on this course.
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Partial Traces

• The notion of partial traces can be defined over an abstract

B(H1 ⊗ H2) without making references to bases.

⋄ Consider the “inclusion” map

i : B(H1) →֒ B(H1 ⊗ H2),

i(A) = A⊗ I.

⊲ The map i has an adjoint

i∗ : B(H1 ⊗ H2) → B(H1)

〈A ⊗ I,X〉 = 〈A, i∗(X)〉.

⊲ Tr2(X) := i∗(X).

⋄ Likewise, Tr1(X) := j∗(X) with the relationships:

j : B(H2) →֒ B(H1 ⊗ H2),

j(B) = I ⊗ B,
〈I ⊗ B, X〉 = 〈B, j∗(X)〉.

• With respect to basis, show that the above abstract definitions

can be realized via (2.16).

• If ρ is a density matrix in B(H1 ⊗ H2), it is conventional to

write ρ1 = Tr2(ρ). Then

Tr(Aρ1) = Tr((A⊗ I)ρ). (2.25)
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Overlook an Unknown System

• Suppose we are interested only in one system and have no access

to the other system.

⋄ The partial trace allows us to forget the other system.

⋄ The partial traces quantify the action on only the known

system.

• Let a pure state |ψ〉 ∈ Cm ⊗ Cn be represented by the matrix

D ∈ Cm×n.

⋄ Its density matrix is ρ = vec(D⊤)vec(D⊤)∗.

⋄ Write D⊤ = [d1, . . .dm], dj ∈ Cn. Then

Tr1(ρ) :=
m∑

j=1

djd
∗
j ,

Tr2(ρ) := [

n∑

s=1

disdjs].

⊲ Do the partial traces of a density matrix remain to be

density matrices?
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Purifying a Mixed State

• Given a mixed state density matrix

ρ1 =
∑

i

µi |ψi〉 〈ψi| ;
∑

i

µi = 1; µi ≥ 0

in H1, is it always possible to find a pure state density matrix

ρ ∈ B(H1 ⊗ H2) whose partial trace over the extra Hilbert

space yields the given ρ1?

⋄ Let H2 be a Hilbert space with the same dimension as H1.

⋄ Let {
∣∣φj

〉
} be an orthonormal basis of H2.

⋄ Define

|Ψ〉 :=
∑

i

√
µi |ψi〉 ⊗ |φi〉 .

⊲ |Ψ〉 is a unit vector in H1 ⊗ H2.

⊲ The density matrix of H1 ⊗ H2 is given by

ρ := |Ψ〉 〈Ψ| =
∑

i,j

√
µiµj |ψiφi〉

〈
ψjφj

∣∣ .

⊲ Compute Tr2(ρ)

Tr2(ρ) =
∑

k

(I ⊗ 〈φk|)(
∑

i,j

√
µiµj |ψiφi〉

〈
ψjφj

∣∣)(I ⊗ |φk〉)

=
∑

i,j,k

√
µiµj |ψi〉 〈φk|φi〉

〈
ψj

∣∣φj
〉
|φk〉

= ρ1.

• Note that the original mixed state ρ1 is purified to become a

pure state |Ψ〉.
⋄ There are infinitely many ways to purify a mixed state.
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