
Chapter 3

Quantum Computing Tools

The purpose of this chapter is to prepare some basic tools useful for

quantum computation.

• Bits vs. Qubits

• Reversible Operations

• Measurement and the Born rule

• Basic Logic Gates vs. Quantum Gates

• Circuit Design

• Non-cloning Theorem
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3.1 Quantum Computer

• A quantum computer is one that executes operations by exploit-

ing certain special transformations of its internal state.

• In a quantum computer, the physical systems encoding the in-

dividual logical bits must not have any physical interactions

with whatever that are not under the complete control of the

intended program.

⋄ These common interactions matters not in a conventional

computers:

⊲ Air molecules bouncing off the physical systems.

⊲ Absorption of minute amounts of ambient radiant ther-

mal energy.

⊲ Coexistent features within the same system that cause in-

terference phenomena between what matters for the com-

putation and what does not.

⋄ But, they introduce potentially catastrophic disruptions into

the operation of a quantum computer.

• How to maintain isolation is a challenge!

⋄ In general a quantum computer cannot be encoded in phys-

ical systems of macroscopic size.

⋄ Bits are encoded in a small number of states of a system of

atomic size.

⊲ Extra internal features require extraordinarily high ener-

gies to come into play.
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Bits versus Qubits

• On a classical computer, a bit (binary digit) is the basic unit of

digital representation.

⋄ Each digit, 0 or 1, is realized by a specific physical quantity,

say, the on-or-off of an electronic flow.

⋄ Numbers are represented by strings of 0’s and 1’s.

⋄ Binary arithmetic converts numbers into other numbers.

⋄ Most machines have finite precision and limited memory.

• On a quantum computer, a qubit (quantum bit) is the basic

unit of quantum information.

⋄ A qubit is a two-state quantum mechanical system, denoted

by |0〉 or |1〉.
⋄ A qubit is the quantum version of the classical bit physically

realized with a two-state device.

• The fundamental difference is

⋄ In a classical system, a bit would have to be in one state or

the other.

⋄ In a quantum mechanics, the qubit is to be in a coherent

superposition of both states simultaneously.
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Representing an n-Qubit

• Any integer x ∈ [0, 2n) has a unique binary representation:

x ≡ (xn−1 . . . x0)2 :=
n−1∑

j=0

xj2
j. (3.1)

⋄ Each xj is either 0 or 1.

⋄ We say that x is composed by n bits.

⋄ Count the indices from right to left.

• We can mimic a similar notion by thinking x as an n-dimensional

vector x where

x = |x〉n := |xn−1〉 ⊗ |xn−1〉 ⊗ . . . |x0〉 . (3.2)

⋄ In this way, we properly identify |x〉n with the standard basis
in Cn.

|5〉3 = |101〉3 = |1〉⊗|0〉⊗|1〉 =
[
0

1

]
⊗
[
1

0

]
⊗
[
0

1

]
=




0
0
0
0
0
1
0
0


.

• In Section 2.3, we represent a 2-Qubit element |ψ〉 ∈ C2 ⊗ C2

by a 2× 2 matrix. Now we can represent it by a vector in C4.

|ψ〉 = α00 |00〉 + α01 |01〉 + α10 |10〉 + α11 |11〉 =




α00

α01

α10

α11


 .
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n-Qubit in C2n

• An n-qubit |ψ〉 ∈ C⊗n should be an order-n tensor.

• The preceding notion can be generalized

|ψ〉 =
∑

0≤x<2n
αx |x〉n . (3.3)

⋄ |x〉n is the x-th standard basis in C2n. (Starting from 0)

⋄
∑

0≤x<2n |αx|2 = 1.

⋄ A general state in the n-partite system C2n resides in a 2n-

dimensional complex vector space.

• Recall the notation of separability and entanglement.

⋄ Not all vectors c ∈ C4 can be separated as c = a⊗ b with

a,b ∈ C2.

⋄ What is the necessary condition that a vector c ∈ C2n is

separable?

⊲ 2n >> 2n when n is large. So, most quantum states are

entangled.
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Multistate Systems

• An integer can be expressed in an arbitrary base.

⋄ (11)10 = (12)9 = (102)3 = (111)2.

• Likewise, a quantum system can admit three different states,

each is called a qutrit.

⋄ In general, if a system takes d different states, then each

state is called a qudit.

• Maybe it is of interest for theoretical consideration only. How-

ever, just in case it becomes useful, how to derive the general

representation? (Recall that IBM machines use base 16.)
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3.2 Reversible Operations

• A crucial and necessary feature in quantum computing is that

all but one operations must be reversible. That is, when trans-

forming an initial state of the final form, only processes whose

action can be inverted are employed.

⋄ Why is this concept of reversibility so important?

• The one single irreversible component to the operation of a

quantum computer is measurement.

⋄ Measurement is the only way to extract useful information.

⊲ In a classical computer, the extraction of information

from the state of the bits is natural and conceptually

straightforward.

⊲ In a quantum machine, the measurement after the state

has acquired its final form destroys the state.
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Some Irreversible Operators

• ERASE is irreversible. (not feasible on quantum machines)

⋄ It nullifies every state.

⋄ There is no way to recover the initial state.

• AND is irreversible.

⋄ AND returns a high output |1〉 only if all inputs are high.

Input Output

A B A ∧ B

|0〉 |0〉 |0〉
|0〉 |1〉 |0〉
|1〉 |0〉 |0〉
|1〉 |1〉 |1〉

⋄ Suppose its output is |0〉. Can we infer what its inputs were?
• XOR is irreversible.

⋄ XOR is an exclusive OR that returns a true output results

if one and only one of the inputs is true.

Input Output

A B A ⊕ B

|0〉 |0〉 |0〉
|0〉 |1〉 |1〉
|1〉 |0〉 |1〉
|1〉 |1〉 |0〉

⋄ Why is this operation irreversible?
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Some Reversible Operations

• NOT, denoted by X, is reversible.

⋄ It exchanges two states.

⋄ X(|0〉) = |1〉; X(|1〉) = |0〉.
⋄ X2 = I .

⋄ Can think of X as
X =

[
0 1
1 0

]
. (3.4)

• SWAP, denoted by Sij, is reversible.

⋄ Sij swaps the ith and the jth qubits.

⋄ Over a bipartite system, S01 |0〉2 = |0〉2, S01 |1〉2 = |2〉2,
S01 |2〉2 = |1〉2, S01 |3〉2 = |3〉2.

⋄ Can think of Sij as

S01 = S10 =




1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1


. (3.5)

• Theorem: Any Boolean function f : {0, 1}n → {0, 1}n is

computable by a Boolean circuit C using just AND, OR, and

NOT gates.

⋄ Gates AND, OR, and NOT are universal.

⋄ See if you can prove the above theorem.

⋄ A related question is, if a circuit can be built, how to build

it with the shortest length?
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Why Is Reversibility Necessary?

• Quantum computers work by applying quantum gates to quan-

tum states.

⋄ Quantum gates are the basic building blocks of quantum

circuits, like logic gates are for classical digital circuits.

⋄ The quantum circuits realize certain functions for quantum

computations, to help evolving the quantum system to reach

some desired ultimate goal.

• One major difference between quantum gates and classical logic

gates is the reversibility.

⋄ Quantum gates are reversible, i.e. suppose A is a certain

quantum gate. ThenA |X〉 = |Y 〉 if and onlyA |Y 〉 = |X〉,
ensuring no information loss.

⋄ Classical gates are not reversible.

⊲ A typical arithmetic operation is irreversible.

⊲ The loss of “information” is a huge problem. (What

information?)

• Major challenge:

⋄ An operation on a classical computer is extendable to a

quantum computer must be reversible.
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Preserving Quantum Properties

• The evolution of quantum states must preserve property of

quantum mechanics.

⋄ Keep the sum-to-one of probabilities of all possible outcomes.

⋄ Preserve the set of density matrices.

• Suppose not. Then

⋄ Begin with two entangled states.

⋄ Go through some gates that are irreversible.

⋄ The above properties are lost.

⋄ Where would we stand? No information can be retrieved.

• The quantum gates should be reversible primarily because of

energy efficiency.

⋄ Notice the cooling problem in any classical computer (even

battery-based).

⋄ Can calculate energy produced for every bit of information

lost due to an irreversible computation.

• Unitary transformation can preserve quantum properties.

⋄ Thus, any quantum gate is to be implemented as a unitary

operator.

⋄ A unitary transformation is always reversible.
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3.3 Logic Gates vs. Quantum Gates

• In classical systems, binary values are stored in classical mem-

ory, passed through logic gates, altered and modified along the

way, and finally, produce some output.

⋄ Gates ⇒ Circuits ⇒ Algorithms.

• The same goes for quantum systems.

⋄ Superpose states in a quantum memory

⋄ Applying quantum gates maps that superpose to another

state.

⋄ Take measurement to produce some meanful output.

• Similar ideas, but different way to build a gate.

⋄ In classical systems, any classical gate can be represented

using Boolean algebra.

⋄ In quantum systems, the any quantum gate should be de-

scribed as a unitary matrix.

• Major challenge:

⋄ How to convert an irreversible Boolean algebra to a reversible

unitary matrix?

• In quantum systems, if the gate acts on n input qubits, the

unitary matrix will be of size 2n × 2n to produce n output

qubits.
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cNOT Gate

• The controlled-NOT operation cNOT plays a significant role

in quantum computing.

⋄ Cij flips the jth qubit (target) if and only if the ith qubit

(control) is |1〉.
Before After

Control Target Control Target

|0〉 |0〉 |0〉 |0〉
|0〉 |1〉 |0〉 |1〉
|1〉 |0〉 |1〉 |1〉
|1〉 |1〉 |1〉 |0〉

⊲ The states are enumerate from right to left.

X C10 |xy〉 means that x is the control.

X C01 |xy〉 means that y is the control.

• Over a bipartite system, C10 |0〉2 = |0〉2, C10 |1〉2 = |1〉2,
C10 |2〉2 = |3〉2, C10 |3〉2 = |2〉2. (Work out what C01 does?)

⋄ Can think of C01 and C10 as

C10 =

[
1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

]
C01 =

[
1 0 0 0
0 0 0 1
0 0 1 0
0 1 0 0

]
.

⋄ Can also write

Cij |xi〉 |yj〉 = |xi〉 |yj ⊕ xi〉
Cji |xi〉 |yj〉 = |xi ⊕ yj〉 |yj〉 .

⊲ ⊕ is the addition modulo 2.

• See the similarity between XOR and cNOT? (Why needed?)
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Z Gate

• A useful single qubit n operator:

⋄ For x = 0 or 1, define
{

n |x〉 := x |x〉 ,
ñ |x〉 := (1− x) |x〉 .

(3.6)

⋄ Can represent

n =
[

0 0
0 1

]
; ñ =

[
1 0
0 0

]
.

⋄ Enjoy basic properties such as
{

n2 = n; ñ
2 = ñ; nñ = ñn = 0; n + ñ = I2;

nX = Xñ; ñX = Xn.

• Let nj and Xj denote their applications to the jth qubit. Then

Cij = ñi +Xjni.

⋄ The proof would be a good exercise.
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• The Z gate has no physical meaning, but is a useful intermedi-

ator.

Z := ñ− n =

[
1 0

0 −1

]
. (3.7)

⋄ Trivially,

n =
1

2
(I − Z); ñ =

1

2
(I + Z).

⋄ Also,

XiZj =

{
ZiXj, if i 6= j

−ZiXj, if i = j,
(3.8)

⋄ Can write

Cij =
1

2
(I2 + Zi) +

1

2
Xj(I2 − Zi)

=
1

2
(I2 +Xj) +

1

2
Zi(I2 −Xj).
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Hadamard Gate H

• Hadamard gate is another critically important operation.

H =
1√
2
(X + Z) =

1√
2

[
1 1

1 −1

]
. (3.9)

⋄ Observe these effects:

H |0〉 =
1√
2
(|0〉 + |1〉),

(H⊗H)(|0〉 ⊗ |0〉) = H |0〉 ⊗H |0〉 (3.10)

=
1

2
(|0〉2 + |1〉2 + |2〉2 + |3〉2),

H⊗n |0〉n =
1√
2n

∑

0≤x<2n
|x〉n . (3.11)

⊲ This is an equally weighted superposition of all possible

n-qubits.

X A good starting point for any quantum evolution.

X Consider the case n = 100. Apply the Hadamard gate

to the trivial state |0〉100. Then the final state will

contain the results of all 2100 ≈ 1030 states. This is

the amazing power quantum parallelism.

• Verify the following general formula:

H⊗n |z〉n =
∑

0≤x<2n

(−1)x·z√
2n

|x〉n . (3.12)

⋄ If |x〉n = |xn−1 . . . x0〉2 and |z〉n = |zn−1 . . . z0〉2, then
x · z := xn−1zn−1 ⊕ . . .⊕ x0z0. (3.13)
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The EPR Pairs

• Consider the combined effect∣∣ψxy

〉
:= C10H1 |xy〉 . (3.14)

⋄ Read as applying H to the qubit x, followed by the cNOT

using the first qubit to control the qubit y.

|ψ00〉 = C10
1√
2
(|0〉 + |1〉) |0〉 = 1√

2
(|00〉 + |11〉) =

∣∣Φ+
〉

|ψ01〉 = C10
1√
2
(|0〉 + |1〉) |1〉 = 1√

2
(|01〉 + |10〉) =

∣∣Ψ+
〉

|ψ10〉 = C10
1√
2
(|0〉 − |1〉) |0〉 = 1√

2
(|00〉 − |11〉) =

∣∣Φ−〉

|ψ11〉 = C10
1√
2
(|0〉 − |1〉) |1〉 = 1√

2
(|01〉 − |10〉) =

∣∣Ψ−〉

⋄ Can be represented by the matrix multiplication

C10(H⊗ I2) =
1√
2

[
1 0 1 0
0 1 0 1
0 1 0 −1
1 0 −1 0

]
.

• A quantum circuit that produces the orthonormal entangled

Bell states
∣∣ψxy

〉
from untangled 2-qubit states |xy〉.

|x〉 H •
=
∣∣ψxy

〉
|y〉

⋄ • denotes a control point.

⋄ � denotes a gate.

⋄ ⊕ denotes a target.
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More Exercises

• What is the output of this circuit?

|x〉 H • H

|y〉
⋄ Work out the qubit analysis step by step and show that

(H⊗ I2)C10(H⊗ I2) =
1

2

[
1 1 1 −1
1 1 −1 1
1 −1 1 1
−1 1 1 1

]
.

• Prove the following results:

⋄
|x〉 H • H

=
∣∣ψyx

〉

|y〉 H

⋄
H X H = Z

⋄
H Z H = X

⋄
• Z

=

Z •
⋄

H • H X
=

H X H •
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Toffoli Gate T

• It has been known that to build up all arithmetical operations

on a reversible classical computer it is necessary (and sufficient)

to use at least one classically irreducible 3-qubit gate. (Why?)

• Consider the Toffoli gate T.

⋄ It is a ccNOT gate where the third (target) qubit is flipped

if and only if the first two (control) qubits are |1〉.
Before After

Control Target Control Target

|00〉 |0〉 |00〉 |0〉
|00〉 |1〉 |00〉 |1〉
|01〉 |0〉 |01〉 |0〉
|01〉 |1〉 |01〉 |1〉
|10〉 |0〉 |10〉 |0〉
|10〉 |1〉 |10〉 |1〉
|11〉 |0〉 |11〉 |1〉
|11〉 |1〉 |11〉 |0〉

⋄ Can write

T |x〉 |y〉 |z〉 = |x〉 |y〉 |z ⊕ xy〉 . (3.15)

⋄ Can draw

|x〉 • |x〉
|y〉 • |y〉
|z〉 |z ⊕AND(x, y)〉

• One can use Toffoli gates to build systems that will perform any

desired Boolean function computation in a reversible manner,

i.e., the Tofolli gate is universal. (More to think about!)

• A Toffoli gate can be constructed from eight cNOT gates.
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AND and NAND Gates

• The logical AND and NAND gates are not reversible.

⋄ To make them usable for quantum computation, we have to

build some equivalent gates.

⋄ The notion of Tofolli gate can be applied.

• AND(x, y) = T |xy0〉.
⋄

|x〉 • |x〉
|y〉 • |y〉
|0〉 |AND(x, y)〉

• NAND(x, y) = T |xy1〉.
⋄

|x〉 • |x〉
|y〉 • |y〉
|1〉 |NAND(x, y)〉
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OR Gate

• OR(x, y) is much harder to reverse.

• Consider the equivalence

Input Output Input Output

|x〉 |y〉 |x〉 ∨ |y〉 |¬x〉 |¬y〉 |¬x〉 ∧ |¬y〉
|0〉 |0〉 |0〉 |1〉 |1〉 |1〉
|0〉 |1〉 |1〉 |1〉 |0〉 |0〉
|1〉 |0〉 |1〉 |0〉 |1〉 |0〉
|1〉 |1〉 |1〉 |0〉 |0〉 |0〉

⋄
|x〉 X • |¬x〉

|y〉 X • |¬y〉

|0〉 X X |OR(x, y)〉
⋄ Does this work?

|x〉 X • |¬x〉

|y〉 X • |¬y〉

|1〉 |OR(x, y)〉
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3.4 Circuits

• As in the usual sense of computation, a suitably programmed

quantum computer should act on a number x to produce an-

other number f(x) for some specified function f .

⋄ Properly interpreted, will assume x is an integer represented

in an n-qubit integer.

• Different from the classical computation, quantum computers

must operate reversibly to perform their magic, except for mea-

surement gates.

⋄ They are generally designed to operate with both input and

output registers.

⊲ Sometimes the algorithm has to be designed in a fairly

nonclassical way.

⋄ Need to view the function f as a unitary transformation.

⊲ We have see how AND and OR are treated.
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Registers

• Suppose f : {0, 1}n → {0, 1}m.
⋄ Represent (x; f(x)) in at least n +m Qbits.

⊲ The first n-qubits are called the input register, represent-

ing x.

⊲ The last m-qubits are called the output register, repre-

senting f(x).

⋄ Sometimes additional qubits might be needed. (Why?)

• A standard protocol for quantum computation of f(x):

Uf(|x〉n |y〉m) := |x〉n |f(x)⊕ y〉m . (3.16)

⋄ ⊕ is the modulo-2 bitwise addition (without carrying).

⋄ Uf(|x〉n |0〉m) := |x〉n |f(x)〉m.
• The operator Uf is reversible.

UfUf(|x〉n |y〉m) = Uf(|x〉n |f(x)⊕ y〉m)
= |x〉n |f(x)⊕ f(x)⊕ y〉m = |x〉n |y〉m .
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Quantum Parallelism and Weirdness

• Recall (3.11).

H⊗n |0〉n =
1√
2n

∑

0≤x<2n
|x〉n .

• Observe

Uf(H
⊗n ⊗ Im)(|0〉n |0〉m) =

1√
2n

∑

0≤x<2n
Uf(|x〉n |0〉m)

=
1√
2n

∑

0≤x<2n
|x〉n |f(x)〉m . (3.17)

⋄ This relationship reveals that all 2n calculations of f(x) are

done in parallel! We have done nothing fancy on the left side

of (3.17) to the n qubits, but the mathematics tells that the

quantum computation has “somehow” divided the compu-

tational task among 2n of parallel worlds. This simultaneity

is where the quantum computation achieves its power.

⋄ However, we have no way to learn the state since they all

appear with equal probability.

• The conventional notion that the selection of x was made before

f(x) was evaluated is as wrong as as asserting that a superposed

qubit is actually in any of its basis states.

⋄ The so called “quantum weirdness” is that the random se-

lection of the x, for which f(x) can be learned, is made only

after the computation has been carried out, quite possibly

long after the computation has been finished.
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Non-Cloning Theorem

• One possible remedy for the quantum weirdness is to “remem-

ber” the experimental results. That is, make copies of the out-

put state before running the whole computation over again.

⋄ But such copying is impossible. There is no quantum pro-

cedure that can do duplication. (Why?)

⋄ We can copy if the cloning is limited to the basis states.

• Theorem: There is no unitary transformation that can take

the state |ψ〉n |0〉n into the state |ψ〉n |ψ〉n for arbitrary |ψ〉n.
⋄ Suppose that a unitary operatorU clones a quantum system.

⋄ Let |ψ〉 and |φ〉 be two linear independent states. Then

U(|ψ〉 |0〉) = |ψ〉 |ψ〉 ; U(|φ〉 |0〉) = |φ〉 |φ〉 .
⋄ By linearity,

U(
1√
2
(|ψ〉 + |φ〉) |0〉) =

1√
2
(U(|ψ〉 |0〉) +U(|φ〉 |0〉))

=
1√
2
(|ψ〉 |ψ〉 + |φ〉 |φ〉).

⋄ On the other hand,

U(
1√
2
(|ψ〉 + |φ〉) |0〉) = 1√

2
(|ψ〉 + |φ〉) 1√

2
(|ψ〉 + |φ〉)

=
1

2
(|ψ〉 |ψ〉 + |ψ〉 |φ〉 + |φ〉 |ψ〉 + |φ〉 |φ〉).

• Over C2, describe the non-cloning theorem in linear algebra

terms.
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No Approximate Cloning

• Is it possible to approximately cloning to a reasonable degree?

• Approximate copy is not possible.

⋄ Suppose U is capable of doing

U(|ψ〉 |0〉) ≈ |ψ〉 |ψ〉 ; U(|φ〉 |0〉) ≈ |φ〉 |φ〉 .

⋄ Since a unitary transformation preserves length and angles,

〈U(|ψ〉 |0〉)|U(|φ〉 |0〉)〉 = 〈(|ψ〉 |0〉)|(|φ〉 |0〉)〉
≈ 〈(|ψ〉 |ψ〉)|(|φ〉 |φ〉)〉

⋄ Need to satisfy

〈ψ|φ〉 ≈ (〈ψ|φ〉)2.
⋄ Cannot be true for arbitrary |ψ〉 and |φ〉.
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3.5 Applications of Entanglement

• Dense coding and quantum teleportation are two simple but

illustrative applications of qubits and quantum gates.

⋄ A common setting for both cases is the entanglement.

• Assume the game players are Alice and Bob.

⋄ Assume that both of them have had in hand the same EPR

pair, say, the Bell state |Φ+〉:

|0〉 H • . . . Alice

= 1√
2
(|00〉 + |11〉)

|0〉 . . . Bob

⋄ Assume that Alice has the first bit qubit information and

Bob has the second bit qubit information.
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Dense Coding

• Suppose that Alice wants to send a 2-bit message to Bob.

• Depending on the message 00, 01, 10, 11, Alice applies the Pauli

matrices I2, σx, ıσy, σz, respective, to her (first) qubit in |Φ+〉.
message transformation U on |Φ+〉 state sent

0 = 00 I2 ⊗ I2 |ψ0〉 = 1√
2
(|00〉 + |11〉)

1 = 01 σx ⊗ I2 |ψ1〉 = 1√
2
(|10〉 + |01〉)

2 = 10 ıσy ⊗ I2 |ψ2〉 = 1√
2
(− |10〉 + |01〉)

3 = 11 σz ⊗ I2 |ψ3〉 = 1√
2
(|00〉 − |11〉)

• Alice sends her joint spin over to Bob.

• Bob applies the gate

|a〉 • H

|b〉
to the state he received from Alice.

state received after cNOT after H

|ψ0〉 1√
2
(|00〉 + |10〉) |00〉

|ψ1〉 1√
2
(|11〉 + |01〉) |01〉

|ψ2〉 1√
2
(|01〉 − |11〉) |11〉

|ψ3〉 1√
2
(|00〉 − |10〉) |10〉
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What is significant?

• Alice simply needs to prepare her single 1-qubit in |Φ+〉, by
which she can sent 2-bit information.

• Bob can fully decode the single tangled state for the original

message.

⋄ Look at the second qubit.

⊲ |0〉 ⇒ 00 or 11.

⊲ |1〉 ⇒ 01 or 10.

⋄ Look at the he first qubit.

⊲ |0〉 ⇒ 00 or 01.

⊲ |1〉 ⇒ 10 or 11.

• The only thing in common is that they share a tangled state.

⋄ Try a few other Bell states.

⋄ Does the ordering {I2, σx, ıσy, σz} matter?

• We just see the result, but what is the mathematics behind?
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Teleportation

• Consider the scenario that

⋄ Alice has a qubit |ψ〉 = α1 |0〉+α1 |1〉 that she want to send
to Bob.

⋄ Alice is at far distance away from Bob.

⋄ Alice cannot learn what α0 and α1 are without performing

a measurement, which would cause her to lose |ψ〉 entirely.
(Collapse!!!)

⋄ Even if Alice knew about α0 and α1, it would need infinitely

many bits to maintain the precision.
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Alice’s Tasks

• Prepare a 3-qubit state

|ψ〉 ⊗
∣∣Φ+

〉
=

1√
2
(α0 |000〉 + α0 |011〉 + α1 |100〉 + α1 |111〉).

• Apply the quantum gate

|ψ〉 • H






Alice






Bob
⋄ Before the measurement, Alice has this state in hand:

1

2
(α0 |000〉 + α1 |001〉 + α1 |010〉 + α0 |011〉 + α0 |100〉 − α1 |101〉 − α1 |110〉 + α0 |111〉 .

⋄ Suppose Alice’s measures her two qubits. The probability

of every state in |00〉 , |01〉 , |10〉 , |11〉 is always 1
4. (Why?)

⋄ After measurement, the 3-qubit state collapses to

|00〉 ⊗ (α0 |0〉 + α1 |1〉)
|01〉 ⊗ (α1 |0〉 + α0 |1〉)
|10〉 ⊗ (α0 |0〉 − α1 |1〉)

|11〉 ⊗ (−α1 |0〉 + α0 |1〉)
⊲ The above expression is only for bookkeeping.

X Alice only has two classical bits in hand.

X Alice no long has a copy of the state |ψ〉. (Non-cloning
theorem!)

⊲ The third qubit will be Bob’s state from which he needs

to recover |ψ〉.
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Bob’s Tasks

• Alice “calls” Bob to inform him her partial measurement which

will be two classical bits.

⋄ These two classical bits tell Bob what transform is to be

applied to the third qubit to recover the original |ψ〉.
⋄ Since the “call” is needed, the teleportation is still subject

to the speed of light.

• How?

⋄ If Alice says 00, then Bob’s qubit is precisely |ψ〉.
⋄ If Alice says 01, then Bob applies X to get |ψ〉.
⋄ If Alice says 10, then Bob applies Z to get back |ψ〉.
⋄ If Alice says 11, then Bob applies ıσy = XZ to retrieve |ψ〉.

• The overall teleportation procedure can be described in the cir-

cuit:

|ψ〉 • H






|0〉 





|0〉 H • X Z |ψ〉
⋄ We use ◦ to denote the controlled operator.


