
Chapter 3

Quantum Computing Tools

The purpose of this chapter is to prepare some basic tools useful for

quantum computation.

• Bits vs. Qubits

• Reversible Operations

• Measurement and the Born rule

• Basic Logic Gates vs. Quantum Gates

• Circuit Design

• Non-cloning Theorem

61

62 Quantum Computer

3.1 Quantum Computer

• A quantum computer is one that executes operations by exploit-

ing certain special transformations of its internal state.

• In a quantum computer, the physical systems encoding the in-

dividual logical bits must not have any physical interactions

with whatever that are not under the complete control of the

intended program.

⋄ These common interactions matters not in a conventional

computers:

⊲ Air molecules bouncing off the physical systems.

⊲ Absorption of minute amounts of ambient radiant ther-

mal energy.

⊲ Coexistent features within the same system that cause in-

terference phenomena between what matters for the com-

putation and what does not.

⋄ But, they introduce potentially catastrophic disruptions into

the operation of a quantum computer.

• How to maintain isolation is a challenge!

⋄ In general a quantum computer cannot be encoded in phys-

ical systems of macroscopic size.

⋄ Bits are encoded in a small number of states of a system of

atomic size.

⊲ Extra internal features require extraordinarily high ener-

gies to come into play.

Quantum Computing Tools 63

Bits versus Qubits

• On a classical computer, a bit (binary digit) is the basic unit of

digital representation.

⋄ Each digit, 0 or 1, is realized by a specific physical quantity,

say, the on-or-off of an electronic flow.

⋄ Numbers are represented by strings of 0’s and 1’s.

⋄ Binary arithmetic converts numbers into other numbers.

⋄ Most machines have finite precision and limited memory.

• On a quantum computer, a qubit (quantum bit) is the basic

unit of quantum information.

⋄ A qubit is a two-state quantum mechanical system, denoted

by |0〉 or |1〉.
⋄ A qubit is the quantum version of the classical bit physically

realized with a two-state device.

• The fundamental difference is

⋄ In a classical system, a bit would have to be in one state or

the other.

⋄ In a quantum mechanics, the qubit is to be in a coherent

superposition of both states simultaneously.

64 Quantum Computer

Representing an n-Qubit

• Any integer x ∈ [0, 2n) has a unique binary representation:

x ≡ (xn−1 . . . x0)2 :=
n−1∑

j=0

xj2
j. (3.1)

⋄ Each xj is either 0 or 1.

⋄ We say that x is composed by n bits.

⋄ Count the indices from right to left.

• We can mimic a similar notion by thinking x as an n-dimensional

vector x where

x = |x〉n := |xn−1〉 ⊗ |xn−1〉 ⊗ . . . |x0〉 . (3.2)

⋄ In this way, we properly identify |x〉n with the standard basis
in Cn.

|5〉3 = |101〉3 = |1〉⊗|0〉⊗|1〉 =
[
0

1

]
⊗
[
1

0

]
⊗
[
0

1

]
=




0
0
0
0
0
1
0
0


.

• In Section 2.3, we represent a 2-Qubit element |ψ〉 ∈ C2 ⊗ C2

by a 2× 2 matrix. Now we can represent it by a vector in C4.

|ψ〉 = α00 |00〉 + α01 |01〉 + α10 |10〉 + α11 |11〉 =




α00

α01

α10

α11


 .

Quantum Computing Tools 65

n-Qubit in C2n

• An n-qubit |ψ〉 ∈ C⊗n should be an order-n tensor.

• The preceding notion can be generalized

|ψ〉 =
∑

0≤x<2n
αx |x〉n . (3.3)

⋄ |x〉n is the x-th standard basis in C2n. (Starting from 0)

⋄
∑

0≤x<2n |αx|2 = 1.

⋄ A general state in the n-partite system C2n resides in a 2n-

dimensional complex vector space.

• Recall the notation of separability and entanglement.

⋄ Not all vectors c ∈ C4 can be separated as c = a⊗ b with

a,b ∈ C2.

⋄ What is the necessary condition that a vector c ∈ C2n is

separable?

⊲ 2n >> 2n when n is large. So, most quantum states are

entangled.

66 Quantum Computer

Multistate Systems

• An integer can be expressed in an arbitrary base.

⋄ (11)10 = (12)9 = (102)3 = (111)2.

• Likewise, a quantum system can admit three different states,

each is called a qutrit.

⋄ In general, if a system takes d different states, then each

state is called a qudit.

• Maybe it is of interest for theoretical consideration only. How-

ever, just in case it becomes useful, how to derive the general

representation? (Recall that IBM machines use base 16.)

3.2. REVERSIBLE OPERATIONS 67

3.2 Reversible Operations

• A crucial and necessary feature in quantum computing is that

all but one operations must be reversible. That is, when trans-

forming an initial state of the final form, only processes whose

action can be inverted are employed.

⋄ Why is this concept of reversibility so important?

• The one single irreversible component to the operation of a

quantum computer is measurement.

⋄ Measurement is the only way to extract useful information.

⊲ In a classical computer, the extraction of information

from the state of the bits is natural and conceptually

straightforward.

⊲ In a quantum machine, the measurement after the state

has acquired its final form destroys the state.

68 Reversible Operations

Some Irreversible Operators

• ERASE is irreversible. (not feasible on quantum machines)

⋄ It nullifies every state.

⋄ There is no way to recover the initial state.

• AND is irreversible.

⋄ AND returns a high output |1〉 only if all inputs are high.

Input Output

A B A ∧ B

|0〉 |0〉 |0〉
|0〉 |1〉 |0〉
|1〉 |0〉 |0〉
|1〉 |1〉 |1〉

⋄ Suppose its output is |0〉. Can we infer what its inputs were?
• XOR is irreversible.

⋄ XOR is an exclusive OR that returns a true output results

if one and only one of the inputs is true.

Input Output

A B A ⊕ B

|0〉 |0〉 |0〉
|0〉 |1〉 |1〉
|1〉 |0〉 |1〉
|1〉 |1〉 |0〉

⋄ Why is this operation irreversible?

Quantum Computing Tools 69

Some Reversible Operations

• NOT, denoted by X, is reversible.

⋄ It exchanges two states.

⋄ X(|0〉) = |1〉; X(|1〉) = |0〉.
⋄ X2 = I .

⋄ Can think of X as
X =

[
0 1
1 0

]
. (3.4)

• SWAP, denoted by Sij, is reversible.

⋄ Sij swaps the ith and the jth qubits.

⋄ Over a bipartite system, S01 |0〉2 = |0〉2, S01 |1〉2 = |2〉2,
S01 |2〉2 = |1〉2, S01 |3〉2 = |3〉2.

⋄ Can think of Sij as

S01 = S10 =




1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1


. (3.5)

• Theorem: Any Boolean function f : {0, 1}n → {0, 1}n is

computable by a Boolean circuit C using just AND, OR, and

NOT gates.

⋄ Gates AND, OR, and NOT are universal.

⋄ See if you can prove the above theorem.

⋄ A related question is, if a circuit can be built, how to build

it with the shortest length?

70 Reversible Operations

Why Is Reversibility Necessary?

• Quantum computers work by applying quantum gates to quan-

tum states.

⋄ Quantum gates are the basic building blocks of quantum

circuits, like logic gates are for classical digital circuits.

⋄ The quantum circuits realize certain functions for quantum

computations, to help evolving the quantum system to reach

some desired ultimate goal.

• One major difference between quantum gates and classical logic

gates is the reversibility.

⋄ Quantum gates are reversible, i.e. suppose A is a certain

quantum gate. ThenA |X〉 = |Y 〉 if and onlyA |Y 〉 = |X〉,
ensuring no information loss.

⋄ Classical gates are not reversible.

⊲ A typical arithmetic operation is irreversible.

⊲ The loss of “information” is a huge problem. (What

information?)

• Major challenge:

⋄ An operation on a classical computer is extendable to a

quantum computer must be reversible.

Quantum Computing Tools 71

Preserving Quantum Properties

• The evolution of quantum states must preserve property of

quantum mechanics.

⋄ Keep the sum-to-one of probabilities of all possible outcomes.

⋄ Preserve the set of density matrices.

• Suppose not. Then

⋄ Begin with two entangled states.

⋄ Go through some gates that are irreversible.

⋄ The above properties are lost.

⋄ Where would we stand? No information can be retrieved.

• The quantum gates should be reversible primarily because of

energy efficiency.

⋄ Notice the cooling problem in any classical computer (even

battery-based).

⋄ Can calculate energy produced for every bit of information

lost due to an irreversible computation.

• Unitary transformation can preserve quantum properties.

⋄ Thus, any quantum gate is to be implemented as a unitary

operator.

⋄ A unitary transformation is always reversible.

72 Gates

3.3 Logic Gates vs. Quantum Gates

• In classical systems, binary values are stored in classical mem-

ory, passed through logic gates, altered and modified along the

way, and finally, produce some output.

⋄ Gates ⇒ Circuits ⇒ Algorithms.

• The same goes for quantum systems.

⋄ Superpose states in a quantum memory

⋄ Applying quantum gates maps that superpose to another

state.

⋄ Take measurement to produce some meanful output.

• Similar ideas, but different way to build a gate.

⋄ In classical systems, any classical gate can be represented

using Boolean algebra.

⋄ In quantum systems, the any quantum gate should be de-

scribed as a unitary matrix.

• Major challenge:

⋄ How to convert an irreversible Boolean algebra to a reversible

unitary matrix?

• In quantum systems, if the gate acts on n input qubits, the

unitary matrix will be of size 2n × 2n to produce n output

qubits.

Quantum Computing Tools 73

cNOT Gate

• The controlled-NOT operation cNOT plays a significant role

in quantum computing.

⋄ Cij flips the jth qubit (target) if and only if the ith qubit

(control) is |1〉.
Before After

Control Target Control Target

|0〉 |0〉 |0〉 |0〉
|0〉 |1〉 |0〉 |1〉
|1〉 |0〉 |1〉 |1〉
|1〉 |1〉 |1〉 |0〉

⊲ The states are enumerate from right to left.

X C10 |xy〉 means that x is the control.

X C01 |xy〉 means that y is the control.

• Over a bipartite system, C10 |0〉2 = |0〉2, C10 |1〉2 = |1〉2,
C10 |2〉2 = |3〉2, C10 |3〉2 = |2〉2. (Work out what C01 does?)

⋄ Can think of C01 and C10 as

C10 =

[
1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

]
C01 =

[
1 0 0 0
0 0 0 1
0 0 1 0
0 1 0 0

]
.

⋄ Can also write

Cij |xi〉 |yj〉 = |xi〉 |yj ⊕ xi〉
Cji |xi〉 |yj〉 = |xi ⊕ yj〉 |yj〉 .

⊲ ⊕ is the addition modulo 2.

• See the similarity between XOR and cNOT? (Why needed?)

74 Gates

Z Gate

• A useful single qubit n operator:

⋄ For x = 0 or 1, define
{

n |x〉 := x |x〉 ,
ñ |x〉 := (1− x) |x〉 .

(3.6)

⋄ Can represent

n =
[

0 0
0 1

]
; ñ =

[
1 0
0 0

]
.

⋄ Enjoy basic properties such as
{

n2 = n; ñ
2 = ñ; nñ = ñn = 0; n + ñ = I2;

nX = Xñ; ñX = Xn.

• Let nj and Xj denote their applications to the jth qubit. Then

Cij = ñi +Xjni.

⋄ The proof would be a good exercise.

Quantum Computing Tools 75

• The Z gate has no physical meaning, but is a useful intermedi-

ator.

Z := ñ− n =

[
1 0

0 −1

]
. (3.7)

⋄ Trivially,

n =
1

2
(I − Z); ñ =

1

2
(I + Z).

⋄ Also,

XiZj =

{
ZiXj, if i 6= j

−ZiXj, if i = j,
(3.8)

⋄ Can write

Cij =
1

2
(I2 + Zi) +

1

2
Xj(I2 − Zi)

=
1

2
(I2 +Xj) +

1

2
Zi(I2 −Xj).

76 Gates

Hadamard Gate H

• Hadamard gate is another critically important operation.

H =
1√
2
(X + Z) =

1√
2

[
1 1

1 −1

]
. (3.9)

⋄ Observe these effects:

H |0〉 =
1√
2
(|0〉 + |1〉),

(H⊗H)(|0〉 ⊗ |0〉) = H |0〉 ⊗H |0〉 (3.10)

=
1

2
(|0〉2 + |1〉2 + |2〉2 + |3〉2),

H⊗n |0〉n =
1√
2n

∑

0≤x<2n
|x〉n . (3.11)

⊲ This is an equally weighted superposition of all possible

n-qubits.

X A good starting point for any quantum evolution.

X Consider the case n = 100. Apply the Hadamard gate

to the trivial state |0〉100. Then the final state will

contain the results of all 2100 ≈ 1030 states. This is

the amazing power quantum parallelism.

• Verify the following general formula:

H⊗n |z〉n =
∑

0≤x<2n

(−1)x·z√
2n

|x〉n . (3.12)

⋄ If |x〉n = |xn−1 . . . x0〉2 and |z〉n = |zn−1 . . . z0〉2, then
x · z := xn−1zn−1 ⊕ . . .⊕ x0z0. (3.13)

Quantum Computing Tools 77

The EPR Pairs

• Consider the combined effect∣∣ψxy

〉
:= C10H1 |xy〉 . (3.14)

⋄ Read as applying H to the qubit x, followed by the cNOT

using the first qubit to control the qubit y.

|ψ00〉 = C10
1√
2
(|0〉 + |1〉) |0〉 = 1√

2
(|00〉 + |11〉) =

∣∣Φ+
〉

|ψ01〉 = C10
1√
2
(|0〉 + |1〉) |1〉 = 1√

2
(|01〉 + |10〉) =

∣∣Ψ+
〉

|ψ10〉 = C10
1√
2
(|0〉 − |1〉) |0〉 = 1√

2
(|00〉 − |11〉) =

∣∣Φ−〉

|ψ11〉 = C10
1√
2
(|0〉 − |1〉) |1〉 = 1√

2
(|01〉 − |10〉) =

∣∣Ψ−〉

⋄ Can be represented by the matrix multiplication

C10(H⊗ I2) =
1√
2

[
1 0 1 0
0 1 0 1
0 1 0 −1
1 0 −1 0

]
.

• A quantum circuit that produces the orthonormal entangled

Bell states
∣∣ψxy

〉
from untangled 2-qubit states |xy〉.

|x〉 H •
=
∣∣ψxy

〉
|y〉

⋄ • denotes a control point.

⋄ � denotes a gate.

⋄ ⊕ denotes a target.

78 Gates

More Exercises

• What is the output of this circuit?

|x〉 H • H

|y〉
⋄ Work out the qubit analysis step by step and show that

(H⊗ I2)C10(H⊗ I2) =
1

2

[
1 1 1 −1
1 1 −1 1
1 −1 1 1
−1 1 1 1

]
.

• Prove the following results:

⋄
|x〉 H • H

=
∣∣ψyx

〉

|y〉 H

⋄
H X H = Z

⋄
H Z H = X

⋄
• Z

=

Z •
⋄

H • H X
=

H X H •

Quantum Computing Tools 79

Toffoli Gate T

• It has been known that to build up all arithmetical operations

on a reversible classical computer it is necessary (and sufficient)

to use at least one classically irreducible 3-qubit gate. (Why?)

• Consider the Toffoli gate T.

⋄ It is a ccNOT gate where the third (target) qubit is flipped

if and only if the first two (control) qubits are |1〉.
Before After

Control Target Control Target

|00〉 |0〉 |00〉 |0〉
|00〉 |1〉 |00〉 |1〉
|01〉 |0〉 |01〉 |0〉
|01〉 |1〉 |01〉 |1〉
|10〉 |0〉 |10〉 |0〉
|10〉 |1〉 |10〉 |1〉
|11〉 |0〉 |11〉 |1〉
|11〉 |1〉 |11〉 |0〉

⋄ Can write

T |x〉 |y〉 |z〉 = |x〉 |y〉 |z ⊕ xy〉 . (3.15)

⋄ Can draw

|x〉 • |x〉
|y〉 • |y〉
|z〉 |z ⊕AND(x, y)〉

• One can use Toffoli gates to build systems that will perform any

desired Boolean function computation in a reversible manner,

i.e., the Tofolli gate is universal. (More to think about!)

• A Toffoli gate can be constructed from eight cNOT gates.

80 Gates

AND and NAND Gates

• The logical AND and NAND gates are not reversible.

⋄ To make them usable for quantum computation, we have to

build some equivalent gates.

⋄ The notion of Tofolli gate can be applied.

• AND(x, y) = T |xy0〉.
⋄

|x〉 • |x〉
|y〉 • |y〉
|0〉 |AND(x, y)〉

• NAND(x, y) = T |xy1〉.
⋄

|x〉 • |x〉
|y〉 • |y〉
|1〉 |NAND(x, y)〉

Quantum Computing Tools 81

OR Gate

• OR(x, y) is much harder to reverse.

• Consider the equivalence

Input Output Input Output

|x〉 |y〉 |x〉 ∨ |y〉 |¬x〉 |¬y〉 |¬x〉 ∧ |¬y〉
|0〉 |0〉 |0〉 |1〉 |1〉 |1〉
|0〉 |1〉 |1〉 |1〉 |0〉 |0〉
|1〉 |0〉 |1〉 |0〉 |1〉 |0〉
|1〉 |1〉 |1〉 |0〉 |0〉 |0〉

⋄
|x〉 X • |¬x〉

|y〉 X • |¬y〉

|0〉 X X |OR(x, y)〉
⋄ Does this work?

|x〉 X • |¬x〉

|y〉 X • |¬y〉

|1〉 |OR(x, y)〉

82 Circuits

3.4 Circuits

• As in the usual sense of computation, a suitably programmed

quantum computer should act on a number x to produce an-

other number f(x) for some specified function f .

⋄ Properly interpreted, will assume x is an integer represented

in an n-qubit integer.

• Different from the classical computation, quantum computers

must operate reversibly to perform their magic, except for mea-

surement gates.

⋄ They are generally designed to operate with both input and

output registers.

⊲ Sometimes the algorithm has to be designed in a fairly

nonclassical way.

⋄ Need to view the function f as a unitary transformation.

⊲ We have see how AND and OR are treated.

Quantum Computing Tools 83

Registers

• Suppose f : {0, 1}n → {0, 1}m.
⋄ Represent (x; f(x)) in at least n +m Qbits.

⊲ The first n-qubits are called the input register, represent-

ing x.

⊲ The last m-qubits are called the output register, repre-

senting f(x).

⋄ Sometimes additional qubits might be needed. (Why?)

• A standard protocol for quantum computation of f(x):

Uf(|x〉n |y〉m) := |x〉n |f(x)⊕ y〉m . (3.16)

⋄ ⊕ is the modulo-2 bitwise addition (without carrying).

⋄ Uf(|x〉n |0〉m) := |x〉n |f(x)〉m.
• The operator Uf is reversible.

UfUf(|x〉n |y〉m) = Uf(|x〉n |f(x)⊕ y〉m)
= |x〉n |f(x)⊕ f(x)⊕ y〉m = |x〉n |y〉m .

84 Circuits

Quantum Parallelism and Weirdness

• Recall (3.11).

H⊗n |0〉n =
1√
2n

∑

0≤x<2n
|x〉n .

• Observe

Uf(H
⊗n ⊗ Im)(|0〉n |0〉m) =

1√
2n

∑

0≤x<2n
Uf(|x〉n |0〉m)

=
1√
2n

∑

0≤x<2n
|x〉n |f(x)〉m . (3.17)

⋄ This relationship reveals that all 2n calculations of f(x) are

done in parallel! We have done nothing fancy on the left side

of (3.17) to the n qubits, but the mathematics tells that the

quantum computation has “somehow” divided the compu-

tational task among 2n of parallel worlds. This simultaneity

is where the quantum computation achieves its power.

⋄ However, we have no way to learn the state since they all

appear with equal probability.

• The conventional notion that the selection of x was made before

f(x) was evaluated is as wrong as as asserting that a superposed

qubit is actually in any of its basis states.

⋄ The so called “quantum weirdness” is that the random se-

lection of the x, for which f(x) can be learned, is made only

after the computation has been carried out, quite possibly

long after the computation has been finished.

Quantum Computing Tools 85

Non-Cloning Theorem

• One possible remedy for the quantum weirdness is to “remem-

ber” the experimental results. That is, make copies of the out-

put state before running the whole computation over again.

⋄ But such copying is impossible. There is no quantum pro-

cedure that can do duplication. (Why?)

⋄ We can copy if the cloning is limited to the basis states.

• Theorem: There is no unitary transformation that can take

the state |ψ〉n |0〉n into the state |ψ〉n |ψ〉n for arbitrary |ψ〉n.
⋄ Suppose that a unitary operatorU clones a quantum system.

⋄ Let |ψ〉 and |φ〉 be two linear independent states. Then

U(|ψ〉 |0〉) = |ψ〉 |ψ〉 ; U(|φ〉 |0〉) = |φ〉 |φ〉 .
⋄ By linearity,

U(
1√
2
(|ψ〉 + |φ〉) |0〉) =

1√
2
(U(|ψ〉 |0〉) +U(|φ〉 |0〉))

=
1√
2
(|ψ〉 |ψ〉 + |φ〉 |φ〉).

⋄ On the other hand,

U(
1√
2
(|ψ〉 + |φ〉) |0〉) = 1√

2
(|ψ〉 + |φ〉) 1√

2
(|ψ〉 + |φ〉)

=
1

2
(|ψ〉 |ψ〉 + |ψ〉 |φ〉 + |φ〉 |ψ〉 + |φ〉 |φ〉).

• Over C2, describe the non-cloning theorem in linear algebra

terms.

86 Circuits

No Approximate Cloning

• Is it possible to approximately cloning to a reasonable degree?

• Approximate copy is not possible.

⋄ Suppose U is capable of doing

U(|ψ〉 |0〉) ≈ |ψ〉 |ψ〉 ; U(|φ〉 |0〉) ≈ |φ〉 |φ〉 .

⋄ Since a unitary transformation preserves length and angles,

〈U(|ψ〉 |0〉)|U(|φ〉 |0〉)〉 = 〈(|ψ〉 |0〉)|(|φ〉 |0〉)〉
≈ 〈(|ψ〉 |ψ〉)|(|φ〉 |φ〉)〉

⋄ Need to satisfy

〈ψ|φ〉 ≈ (〈ψ|φ〉)2.
⋄ Cannot be true for arbitrary |ψ〉 and |φ〉.

3.5. APPLICATIONS OF ENTANGLEMENT 87

3.5 Applications of Entanglement

• Dense coding and quantum teleportation are two simple but

illustrative applications of qubits and quantum gates.

⋄ A common setting for both cases is the entanglement.

• Assume the game players are Alice and Bob.

⋄ Assume that both of them have had in hand the same EPR

pair, say, the Bell state |Φ+〉:

|0〉 H • . . . Alice

= 1√
2
(|00〉 + |11〉)

|0〉 . . . Bob

⋄ Assume that Alice has the first bit qubit information and

Bob has the second bit qubit information.

88 Entanglement

Dense Coding

• Suppose that Alice wants to send a 2-bit message to Bob.

• Depending on the message 00, 01, 10, 11, Alice applies the Pauli

matrices I2, σx, ıσy, σz, respective, to her (first) qubit in |Φ+〉.
message transformation U on |Φ+〉 state sent

0 = 00 I2 ⊗ I2 |ψ0〉 = 1√
2
(|00〉 + |11〉)

1 = 01 σx ⊗ I2 |ψ1〉 = 1√
2
(|10〉 + |01〉)

2 = 10 ıσy ⊗ I2 |ψ2〉 = 1√
2
(− |10〉 + |01〉)

3 = 11 σz ⊗ I2 |ψ3〉 = 1√
2
(|00〉 − |11〉)

• Alice sends her joint spin over to Bob.

• Bob applies the gate

|a〉 • H

|b〉
to the state he received from Alice.

state received after cNOT after H

|ψ0〉 1√
2
(|00〉 + |10〉) |00〉

|ψ1〉 1√
2
(|11〉 + |01〉) |01〉

|ψ2〉 1√
2
(|01〉 − |11〉) |11〉

|ψ3〉 1√
2
(|00〉 − |10〉) |10〉

Quantum Computing Tools 89

What is significant?

• Alice simply needs to prepare her single 1-qubit in |Φ+〉, by
which she can sent 2-bit information.

• Bob can fully decode the single tangled state for the original

message.

⋄ Look at the second qubit.

⊲ |0〉 ⇒ 00 or 11.

⊲ |1〉 ⇒ 01 or 10.

⋄ Look at the he first qubit.

⊲ |0〉 ⇒ 00 or 01.

⊲ |1〉 ⇒ 10 or 11.

• The only thing in common is that they share a tangled state.

⋄ Try a few other Bell states.

⋄ Does the ordering {I2, σx, ıσy, σz} matter?

• We just see the result, but what is the mathematics behind?

90 Entanglement

Teleportation

• Consider the scenario that

⋄ Alice has a qubit |ψ〉 = α1 |0〉+α1 |1〉 that she want to send
to Bob.

⋄ Alice is at far distance away from Bob.

⋄ Alice cannot learn what α0 and α1 are without performing

a measurement, which would cause her to lose |ψ〉 entirely.
(Collapse!!!)

⋄ Even if Alice knew about α0 and α1, it would need infinitely

many bits to maintain the precision.

Quantum Computing Tools 91

Alice’s Tasks

• Prepare a 3-qubit state

|ψ〉 ⊗
∣∣Φ+

〉
=

1√
2
(α0 |000〉 + α0 |011〉 + α1 |100〉 + α1 |111〉).

• Apply the quantum gate

|ψ〉 • H

Alice

Bob
⋄ Before the measurement, Alice has this state in hand:

1

2
(α0 |000〉 + α1 |001〉 + α1 |010〉 + α0 |011〉 + α0 |100〉 − α1 |101〉 − α1 |110〉 + α0 |111〉 .

⋄ Suppose Alice’s measures her two qubits. The probability

of every state in |00〉 , |01〉 , |10〉 , |11〉 is always 1
4. (Why?)

⋄ After measurement, the 3-qubit state collapses to

|00〉 ⊗ (α0 |0〉 + α1 |1〉)
|01〉 ⊗ (α1 |0〉 + α0 |1〉)
|10〉 ⊗ (α0 |0〉 − α1 |1〉)

|11〉 ⊗ (−α1 |0〉 + α0 |1〉)
⊲ The above expression is only for bookkeeping.

X Alice only has two classical bits in hand.

X Alice no long has a copy of the state |ψ〉. (Non-cloning
theorem!)

⊲ The third qubit will be Bob’s state from which he needs

to recover |ψ〉.

92 Entanglement

Bob’s Tasks

• Alice “calls” Bob to inform him her partial measurement which

will be two classical bits.

⋄ These two classical bits tell Bob what transform is to be

applied to the third qubit to recover the original |ψ〉.
⋄ Since the “call” is needed, the teleportation is still subject

to the speed of light.

• How?

⋄ If Alice says 00, then Bob’s qubit is precisely |ψ〉.
⋄ If Alice says 01, then Bob applies X to get |ψ〉.
⋄ If Alice says 10, then Bob applies Z to get back |ψ〉.
⋄ If Alice says 11, then Bob applies ıσy = XZ to retrieve |ψ〉.

• The overall teleportation procedure can be described in the cir-

cuit:

|ψ〉 • H

|0〉

|0〉 H • X Z |ψ〉
⋄ We use ◦ to denote the controlled operator.

