Chapter 4

Computational Examples

Some classical quantum algorithms will be re-examined, first math-
ematically, then in a quantum matter, to exemplify both the theory
and the implementation.

e Deutsch problem

e Bernstein-Vazirani problem
e Grover algorithm

e Simon problem

e Constructing the Toffoli gate
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4.1 Deutsch Problem

e Deutsch problem is a completely pointless problem.

e However, it is a perfect illustration of all that is miraculous,
subtle, and disappointing about quantum computers.

o It calculates a solution to a problem faster than any classical
computer ever can.

o It illustrates the subtle interaction of superposition, phase-
kick back, and interference.
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Problem Statement

e Suppose f: {0,1} — {0,1}.

fol Jufo| f3
0j0]1]1
101

Determine whether f is constant or balanced.

e The problem is “trivial”, since we only need to evaluate f at
r=0and z = 1.

¢ Can we reach the conclusion by just one query?
o The question boils down to evaluating f(0) + f(1) by one
query.

e Using (4.1), define the quantum computation of f via

Us(l2) [y) = |2) [f(z) D y) - (4.1)

and consider the general gate
r) — — |x
) g, o
ly) = — [f(z) @)
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Gate Representation of f

e We can represent the four individual functions by the circuits:

Uy =
Uy =
_ X -
Uy, = I
Up =
_ X -
e We can also represent the gate Uy as a controlled- f operation
z) — [ =)

ly) —O— [f(x) ®y)

which is called the Deutsch-Josza oracle.

e To be effective, we need to construct a quantum way to evaluate

f0) + f(1).
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Deutsch Algorithm

e Consider the circuit
0) —H— HH— f(0)a f(1)
Uy
1) H— | ——HJI)
¢ Prior to entering the black box Uy, we have prepared the
2-qubit state

0) @ 1) =

1 1
ﬁ(\m + 1)) ® ﬁ(lw — [1)).

¢ The black box U does the following:
Uy(H|0)H|1)) = %Uf(|0> (10) = 11)) + 1) (10) = 1))

= (( D(10) (10) = 1)) + (=1 [1) (j0) — [1)))
_ {( D/O(H0)) [H[1))), if f(0) = f(1),
(— /OB L) [EL1)Y), i F(0) £ £(1),
o The final H ® I returns
{ (=1)/O(jo) [H[1))), if £(0) = f(1),
(=D/O(1) [ ]1))), if £(0) # f(1)
= (=170 f0) @ f1) [H|1))).

e The idea is about superposition, entanglement and interference.

& By measuring the input (top) register, we can indeed answer
the Deutsch problem.

¢ The output register contains no useful information at all.
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Deutsch-Jozsa algorithm

e Suppose f :{0,1}" — {0, 1} is either constant or is balanced.
Determine which of the two is true.

o If n = 2, then there are 2 constant functions and 6 balanced
functions.

o Elements in {0, 1}" can be identified as {|z),,}.
e On a classical machine, we need to make 2"~! + 1 queries.

e The Deutsch-Jozsa algorithm answer this question by just one
query.

0, B T HE A
Uy
1) H H|1)

o What is to be entered into U f7

1
@)= ® —(]0) — |1)).

¢ What is obtained out of the box U7

(_1)f(x) 1
O;ﬂ NG \w>n®ﬁ(!0>—\1>)-

o Using (3.12), the final return is
x)+x-z

1
> Z !Z>n®ﬁ(\0> —0). (42

0<z<2 0<z <2
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How to Interpret?

e The probability of the state |0), is given by

_ 1)/ (@)
Y Sy

0<gp<2™

o If f(z) is constant, then the probability for the state |0) is
precisely 1. That is, the measurement must be 0.

o If f(x) is balanced, then half of the  will produce f(x) = 0
and the other half produces f(z) = 1, making the probability
of the state |0), perfectly and destructively interfered to 0.

o Any measurement that is not |0), implies that f is not con-
stant.
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4.2 Bernstein-Vazirani Problem

e This is another artificial problem.

e The significance lies not in the intrinsic arithmetical interest of
the problem, but in the fact that it can be solved dramatically
and unambiguously faster on a quantum computer.
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Problem Statement

e Suppose f :{0,1}®" — {0, 1} is defined via
flx)=a-x=a, 12,1 D ... D apxo.
e Suppose that we have a way to evaluate f(x). Find |a), with
the smallest number of evaluations of f.

e On a classical machine,

o Can take z = 28, 0 < k < n, then f(2%) = ay.

o Need a total of n evaluations.

e On a quantum machine, regardless the size of n, just need one
invocation.
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Algorithm

e Apply the Deutsch-Jozsa algorithm to f(x) = a - z. By (4.2),
we have

ax+xz

1
> Z |2 >n®ﬁ(\0> =), (43

0<z<2n 0<z <2

e [or a fixed z, take a close look at the second summation:

n—1

1 CLZ 1 a z
Q_HZ(_ + :2_n JEBJ>

0<zx<2n

<.

o If there exists one 0 < j < n — 1 at which a; ® z; # 0, the
product is zero.

o If the coefficient associated with |z), is not zero, then it
must that the z = a and that the associate coefficient must

be 1.
e Thus, we can modify the Deutsch-Jozsa algorithm to
0, {E )~ HE" - )
Uy
1) —H H 1)

¢ Observe all n bits of the number a can now be determined
by measuring the input register, whereas we have called the
subroutine only once!
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4.3 Simon Problem

e In the Bernstein-Vazirani problem,

o A classical computer must call the subroutine n times to
determine the value of a. The number of calls grows linearly
with n.

o A quantum computer need call the subroutine only once.

The number of calls is independent of n.

e The Simon problem illustrates that the speed-up with a quan-
tum computer can be substantially more dramatic.

o With a classical computer the number of calls grows expo-
nentially in n

o With a quantum computer, the calls grow only linearly:.
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Problem Statement

e Suppose F': {0,1}" — {0, 1}" is such that

o F'is periodic; namely, there exists 0 # p € {0, 1}" such that
F(zx & p) = F(x) for every x € {0,1}".
olfy#xand F(x) = F(y), then y =z @ p.

e F'ind the period p.



Computational Examples 105

Conventional Search

e Algorithm:

¢ Feed the function F' with a sequence of different x1, xo, 3, . . .

o List the resulting values of F' until we stumble on an F'(x;)
that is the same as the previously computed values F'(z;).

% Thenp =Ty D x;.
e Complexity analysis:

o At any stage of the process prior to the first success, if m
different values of x have been tried, then all we know is that
p # x; @ x; for all pairs of previously selected values of .

m(m—1)

> Thus at the mth state, only —

eliminated.

candidates of p are

¢ There are a total of 2" — 1 possibilities for p.

¢ To have probability € of success after m trial, we need
1 mm=1)

2 — 1

> The number m of calls for achieving an appreciable prob-

1—(1—

ability of determining p grows exponentially in n.

> Suppose n = 100. To have e = 50% chance of success,
we need to have tried approximately m = 1.3256 x 10%°
calls.
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Algorithm

0y, —EHHEHAR e,
Up
0y [F (),

e The black box function U is a bitwise generalization of Uy

defined in (4.1), i.e.,

e After the Up operation, the state is
1
Ur((H™" ® I,)]0), [0),) = > @), |F(@), . (45)
\/§EOSx<2”
e Given z € {0,1}", observe

1 1 1
H"(—|z) +—= |z ® = —1)"*|z), . (4.6
(\/?Hn \/5\ P)n) \/Qn—_lZ( )77 |2),, - (4.6)

zlp
o Already seen in (3.12),

HY|2), = —— 3 (=17 |2),.

\/27nogz<2n
¢ Therefore,
H*"(|z), + [z & p),) = Y (=)A= |2),,
0<z<2n
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Interpretation

e The set {0,1}" can be partitioned into 2”1 pairs of strings of
the form {z,x @ p}.

o Let . denote the subset consisting of one representative
from each pair.

e The last application of H®” to (4.5) produces

(H*" @ I,,)( Z ), | F(z)

0<x<2”

- WZ +7\x@p> ) |F(2)),

red

WZ JIF@),

z1lp

:WZ

red

e The first register is an equally weighted superposition of ele-
ments |z), that are perpendicular to p.

o Measure the first register and we learn one value |z;), satis-
fying z; L p.
o If the dimension of the subspace span{zi, ..., z,} is less
than n — 1, rerun the circuit until there is enough vectors.
> Solve the linear equation Zp = 0 for a nontrivial p.
¢ Each new z; eliminates half of the candidates for p.

>Ifm=n —I— t, then the probability of determining p is at
least 1 — .

> With O(n) trials, there is a good probability of find p.
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4.4 Unstructured Search Problem

e The quantum search algorithm performs a generic search for a
solution through a space of potential solutions.

e The extremely wide applicability of searching problems makes
Grovers algorithm interesting and important.

e The focus is at the polynomial speed-up over the best-known
classical algorithms.
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Problem Statement

e Given a black box function f : {0,1}" — {0,1} and being
promised that there is a unique a € {0, 1}" such that f(a) =1,
find a.

e The underlying search is called “unstructured” because we have
no prior knowledge about the contents of the database.

¢ Unstructured search can be thought of as a database search
problem in which we want to find an item that meets some
specification.

o If there is a way to “sort” the database, then we might

perform binary search in logarithmic time.

e On a classical machine, we have no way but check the items one
by one and it will take O(2") steps on average.

e The Grover’s algorithm takes only O(22) steps.

¢ This is accomplished by amplifying the amplitude of the
vector |a) while canceling those of the vectors |x) for x # a.

¢ Equivalently, the quantum algorithm is said to have provided
a quadratic speed-up over classical exhaustive search.
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Grover Iterate

e Recall the fact that
Uy |z), H[1) = (=) |z), [H[1)).
o We abbreviate this special phase transformation as
Uy lz), = (1)) |z),.
o If V) =>" w,|x),, then
U |¥) = Z(_ Wm ), wa |z) — 2w, |a),,
= (1 — 2|a), (al,) [¥).

o Can identify Uy = I, — 2|a) (a| without knowing a.
o Uy flips the sign of the component associated with |a), but
leaves others unchanged.

¢ In linear algebra, U ¢ acts like the Householder reflector.
e For |¢) :=H""|0), =>"_ \/% |z),, define
W= 2|¢) (0] — L. (4.7)
¢ Observe that

. @), if |x) = |0),
WH" |z) = { —H""|z), if |2) # |0).

e The operator G := WU ® Iy is called a Grover iterate.
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Grover Algorithm

e The Grover algorithm applies the iterate G about 7v/2" times
and take the measurement.

r-- - -~ - - - -~ - - - - - -~ 1

‘1> H - - ...

e One-step analysis:

¢ Before the first G application,

1
100, [1) 9\/—27;\@1{\1%

o After Uy,

1
= \/27(; ) = 2]a))HI[1).

o After W,
= <<1—i>r¢>+%a>>ﬂu> 4
-7 m—;’ v

¢ The main point of such a G application is that the proba-
bility of |a) is slightly increased. (Check to see that the
total probability is still added to one.)

) @) H 1) .
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Basic Mechanism

e Use these two mechanism in the Grover iterate:

Usla) = —la),
{Uf\@ = 16) ~ o). e

Wig) = \(@ :
Wla) = = [¢) — |a).
e Apply G gate repeatedly to the general form
(V) = s|p) +1t]a)
with (@)2(2” — D+ (& + t)> =1.
e Therefore,
WU V) = W(sUy|p) +tUyla))

— W(s(¢) - }nra» ~ t|a))
28

= SW‘¢>_<t+\/7
25
= S\(M;( \/—)(\/—I@ |a))

25
= (S—ﬁ—\/—f)\@ (t+ﬁ)|a>.

o The probability for |a) is given by

{ (\/L—n +1)?, before G ,
(

\}9’2‘5—n+t— — B2 after G .

)W |a)

(4.10)

\/923n
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Dynamics of Probabilities

e Given syp = 1 and £ty = 0, the Grover algorithm generates a
sequence of coefficients

L L 4s;. L 2ty
Sk+1 = Sk on on 111
tk+1 = tk+ on

o Show that the sequence (sy, t;.) satisfies the relationship s>+
2 j—tﬁ +t? = 1, which is an ellipse.

¢ Rewrite the iteration in matrix form

1— 4 2
Skl | 2| (4.12)
i1 o 1 te | '
2n

21 _242./T—27 :
o are complex and have moduli 1.

> Figenvalues
> The iterates (s, tx) will not converge (cycle around the
ellipse).

e F'ind the first k£ that will maximize the probability for |a).
o Do not iterate more than O(2"71) times. (Why?)
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4.5 Constructing the Toffoli gate

e For a reversible classical computer, it can be shown that at
least one 3-bit gate, such as the ccNOT, is needed to build up
general logical operations.

o It is also known that such 3-bit gates cannot be built up out
of 1- and 2-bit gates.

e [n a quantum computer, however, it is remarkable and impor-
tantl for the feasibility of practical quantum computation that
the quantum extension of this 3-gbit gate, such as the Toffoli
gate T, can be constructed out of a small number of 1- and
2-qbit gates.

e We will come back to work on this section later.



