
Chapter 4

Computational Examples

Some classical quantum algorithms will be re-examined, first math-

ematically, then in a quantum matter, to exemplify both the theory

and the implementation.

• Deutsch problem

• Bernstein-Vazirani problem

• Grover algorithm

• Simon problem

• Constructing the Toffoli gate

93



94 Deutsch Problem

4.1 Deutsch Problem

• Deutsch problem is a completely pointless problem.

• However, it is a perfect illustration of all that is miraculous,

subtle, and disappointing about quantum computers.

⋄ It calculates a solution to a problem faster than any classical

computer ever can.

⋄ It illustrates the subtle interaction of superposition, phase-

kick back, and interference.



Computational Examples 95

Problem Statement

• Suppose f : {0, 1} → {0, 1}.

f0 f1 f2 f3
0 0 0 1 1

1 0 1 0 1

Determine whether f is constant or balanced.

• The problem is “trivial”, since we only need to evaluate f at

x = 0 and x = 1.

⋄ Can we reach the conclusion by just one query?

⋄ The question boils down to evaluating f(0) + f(1) by one

query.

• Using (4.1), define the quantum computation of f via

Uf(|x〉 |y〉) = |x〉 |f(x)⊕ y〉 . (4.1)

and consider the general gate

|x〉
Uf

|x〉
|y〉 |f(x)⊕ y〉



96 Deutsch Problem

Gate Representation of f

• We can represent the four individual functions by the circuits:

Uf0 =

•
Uf1 =

X

•
Uf2 =

X X

Uf3 =

X

• We can also represent the gate Uf as a controlled-f operation

|x〉 f |x〉

|y〉 |f(x)⊕ y〉
which is called the Deutsch-Josza oracle.

• To be effective, we need to construct a quantum way to evaluate

f(0) + f(1).



Computational Examples 97

Deutsch Algorithm

• Consider the circuit

|0〉 H
Uf

H f(0)⊕ f(1)

|1〉 H H |1〉
⋄ Prior to entering the black box Uf , we have prepared the

2-qubit state

|0〉 ⊗ |1〉 ⇛ 1√
2
(|0〉 + |1〉)⊗ 1√

2
(|0〉 − |1〉).

⋄ The black box Uf does the following:

Uf(H |0〉H |1〉) = 1

2
Uf(|0〉 (|0〉 − |1〉) + |1〉 (|0〉 − |1〉))

=
1

2
((−1)f(0)(|0〉 (|0〉 − |1〉)) + (−1)f(1) |1〉 (|0〉 − |1〉))

=

{
(−1)f(0)(|H |0〉〉 |H |1〉〉), if f(0) = f(1),

(−1)f(0)(|H |1〉〉 |H |1〉〉), if f(0) 6= f(1).

⋄ The final H⊗ I2 returns{
(−1)f(0)(|0〉 |H |1〉〉), if f(0) = f(1),

(−1)f(0)(|1〉 |H |1〉〉), if f(0) 6= f(1)

= (−1)f(0)(|f(0)⊕ f(1)〉 |H |1〉〉).
• The idea is about superposition, entanglement and interference.

⋄ By measuring the input (top) register, we can indeed answer

the Deutsch problem.

⋄ The output register contains no useful information at all.



98 Deutsch Problem

Deutsch-Jozsa algorithm

• Suppose f : {0, 1}n → {0, 1} is either constant or is balanced.

Determine which of the two is true.

⋄ If n = 2, then there are 2 constant functions and 6 balanced

functions.

⋄ Elements in {0, 1}n can be identified as {|x〉n}.
• On a classical machine, we need to make 2n−1 + 1 queries.

• The Deutsch-Jozsa algorithm answer this question by just one

query.

|0〉n H⊗n

Uf

H⊗n 

|1〉 H H |1〉
⋄ What is to be entered into Uf?

|0〉n ⊗ |1〉 ⇛
∑

0≤x<2n

1√
2n

|x〉n ⊗
1√
2
(|0〉 − |1〉).

⋄ What is obtained out of the box Uf?

∑

0≤x<2n

(−1)f(x)√
2n

|x〉n ⊗
1√
2
(|0〉 − |1〉).

⋄ Using (3.12), the final return is

∑

0≤z<2n

∑

0≤x<2n

(−1)f(x)+x·z

2n
|z〉n ⊗

1√
2
(|0〉 − |1〉). (4.2)



Computational Examples 99

How to Interpret?

• The probability of the state |0〉n is given by

|
∑

0≤x<2n

(−1)f(x)

2n
|2.

• If f(x) is constant, then the probability for the state |0〉n is

precisely 1. That is, the measurement must be 0.

• If f(x) is balanced, then half of the x will produce f(x) = 0

and the other half produces f(x) = 1, making the probability

of the state |0〉n perfectly and destructively interfered to 0.

⋄ Any measurement that is not |0〉n implies that f is not con-

stant.



100 Bernstein-Vazirani problem

4.2 Bernstein-Vazirani Problem

• This is another artificial problem.

• The significance lies not in the intrinsic arithmetical interest of

the problem, but in the fact that it can be solved dramatically

and unambiguously faster on a quantum computer.



Computational Examples 101

Problem Statement

• Suppose f : {0, 1}⊗n → {0, 1} is defined via

f(x) = a · x = an−1xn−1 ⊕ . . .⊕ a0x0.

• Suppose that we have a way to evaluate f(x). Find |a〉n with

the smallest number of evaluations of f .

• On a classical machine,

⋄ Can take x = 2k, 0 ≤ k < n, then f(2k) = ak.

⋄ Need a total of n evaluations.

• On a quantum machine, regardless the size of n, just need one

invocation.



102 Bernstein-Vazirani problem

Algorithm

• Apply the Deutsch-Jozsa algorithm to f(x) = a · x. By (4.2),

we have
∑

0≤z<2n

∑

0≤x<2n

(−1)a·x+x·z

2n
|z〉n ⊗

1√
2
(|0〉 − |1〉). (4.3)

• For a fixed z, take a close look at the second summation:

1

2n

∑

0≤x<2n
(−1)(a+z)·x =

1

2n

n−1∏

j=0

((−1)0 + (−1)aj⊕zj).

⋄ If there exists one 0 ≤ j < n− 1 at which aj ⊕ zj 6= 0, the

product is zero.

⋄ If the coefficient associated with |z〉n is not zero, then it

must that the z ≡ a and that the associate coefficient must

be 1.

• Thus, we can modify the Deutsch-Jozsa algorithm to

|0〉n H⊗n

Uf

H⊗n |a〉

|1〉 H H |1〉
⋄ Observe all n bits of the number a can now be determined

by measuring the input register, whereas we have called the

subroutine only once!



4.3. SIMON PROBLEM 103

4.3 Simon Problem

• In the Bernstein-Vazirani problem,

⋄ A classical computer must call the subroutine n times to

determine the value of a. The number of calls grows linearly

with n.

⋄ A quantum computer need call the subroutine only once.

The number of calls is independent of n.

• The Simon problem illustrates that the speed-up with a quan-

tum computer can be substantially more dramatic.

⋄ With a classical computer the number of calls grows expo-

nentially in n

⋄ With a quantum computer, the calls grow only linearly.



104 Simon Problem

Problem Statement

• Suppose F : {0, 1}n → {0, 1}n is such that

⋄ F is periodic; namely, there exists 0 6= p ∈ {0, 1}n such that

F (x⊕ p) = F (x) for every x ∈ {0, 1}n.
⋄ If y 6= x and F (x) = F (y), then y = x⊕ p.

• Find the period p.



Computational Examples 105

Conventional Search

• Algorithm:

⋄ Feed the function F with a sequence of different x1, x2, x3, . . ..

⋄ List the resulting values of F until we stumble on an F (xj)

that is the same as the previously computed values F (xi).

⋄ Then p = xj ⊕ xi.

• Complexity analysis:

⋄ At any stage of the process prior to the first success, if m

different values of x have been tried, then all we know is that

p 6= xi ⊕ xj for all pairs of previously selected values of x.

⊲ Thus at the mth state, only m(m−1)
2

candidates of p are

eliminated.

⋄ There are a total of 2n − 1 possibilities for p.

⋄ To have probability ε of success after m trial, we need

1− (1− 1

2n − 1
)
m(m−1)

2 ≥ ε.

⊲ The number m of calls for achieving an appreciable prob-

ability of determining p grows exponentially in n.

⊲ Suppose n = 100. To have ε = 50% chance of success,

we need to have tried approximately m = 1.3256× 1015

calls.



106 Simon Problem

Algorithm

|0〉n H⊗n
UF

H⊗n  |w〉i
|0〉n |F (x)〉n

• The black box function UF is a bitwise generalization of Uf

defined in (4.1), i.e.,

UF (|x〉n |y〉n) = |x〉n |F (x)⊕ y〉n . (4.4)

• After the UF operation, the state is

UF ((H
⊗n ⊗ In) |0〉n |0〉n) =

1√
2n

∑

0≤x<2n
|x〉n |F (x)〉n . (4.5)

• Given x ∈ {0, 1}n, observe

H⊗n(
1√
2
|x〉n+

1√
2
|x⊕ p〉n) =

1√
2n−1

∑

z⊥p
(−1)x·z |z〉n . (4.6)

⋄ Already seen in (3.12),

H⊗n |x〉n =
1√
2n

∑

0≤z<2n
(−1)x·z |z〉n .

⋄ Therefore,

H⊗n(|x〉n + |x⊕ p〉n) =
1√
2n

∑

0≤z<2n
(−1)x·z(1 + (−1)p·z) |z〉n

=
2√
2n

∑

z⊥p
(−1)x·z |z〉n .



Computational Examples 107

Interpretation

• The set {0, 1}n can be partitioned into 2n−1 pairs of strings of

the form {x, x⊕ p}.
⋄ Let I denote the subset consisting of one representative

from each pair.

• The last application of H⊗n to (4.5) produces

(H⊗n ⊗ In)(
1√
2n

∑

0≤x<2n
|x〉n |F (x)〉n)

=
1√
2n−1

∑

x∈I

H⊗n(
1√
2
|x〉n +

1√
2
|x⊕ p〉n) |F (x)〉n

=
1√
2n−1

∑

x∈I

(
1√
2n−1

∑

z⊥p
(−1)x·z |z〉n) |F (x)〉n

• The first register is an equally weighted superposition of ele-

ments |z〉n that are perpendicular to p.

⋄ Measure the first register and we learn one value |zi〉n satis-
fying zi ⊥ p.

⋄ If the dimension of the subspace span{z1, . . . , zm} is less

than n− 1, rerun the circuit until there is enough vectors.

⊲ Solve the linear equation Zp = 0 for a nontrivial p.

⋄ Each new zi eliminates half of the candidates for p.

⊲ If m = n + t, then the probability of determining p is at

least 1− 1
2t+1 .

⊲ With O(n) trials, there is a good probability of find p.



108 Grover Algorithm

4.4 Unstructured Search Problem

• The quantum search algorithm performs a generic search for a

solution through a space of potential solutions.

• The extremely wide applicability of searching problems makes

Grovers algorithm interesting and important.

• The focus is at the polynomial speed-up over the best-known

classical algorithms.



Computational Examples 109

Problem Statement

• Given a black box function f : {0, 1}n → {0, 1} and being

promised that there is a unique a ∈ {0, 1}n such that f(a) = 1,

find a.

• The underlying search is called “unstructured” because we have

no prior knowledge about the contents of the database.

⋄ Unstructured search can be thought of as a database search

problem in which we want to find an item that meets some

specification.

⋄ If there is a way to “sort” the database, then we might

perform binary search in logarithmic time.

• On a classical machine, we have no way but check the items one

by one and it will take O(2n) steps on average.

• The Grover’s algorithm takes only O(2
n
2 ) steps.

⋄ This is accomplished by amplifying the amplitude of the

vector |a〉 while canceling those of the vectors |x〉 for x 6= a.

⋄ Equivalently, the quantum algorithm is said to have provided

a quadratic speed-up over classical exhaustive search.



110 Grover Algorithm

Grover Iterate

• Recall the fact that

Uf |x〉n |H |1〉〉 = (−1)f(x) |x〉n |H |1〉〉 .

⋄ We abbreviate this special phase transformation as

Uf |x〉n = (−1)f(x) |x〉n .

• If |Ψ〉 = ∑
x ωx |x〉n, then

Uf |Ψ〉 =
∑

x

(−1)f(x)ωx |x〉n =
∑

x

ωx |x〉 − 2ωa |a〉n

= (In − 2 |a〉n 〈a|n) |Ψ〉 .

⋄ Can identify Uf = In − 2 |a〉 〈a| without knowing a.
⋄ Uf flips the sign of the component associated with |a〉, but
leaves others unchanged.

⋄ In linear algebra, Uf acts like the Householder reflector.

• For |φ〉 := H⊗n |0〉n =
∑

x
1√
2n
|x〉n, define

W := 2 |φ〉 〈φ| − In. (4.7)

⋄ Observe that

WH⊗n |x〉 =
{

|φ〉 , if |x〉 = |0〉,
−H⊗n |x〉 , if |x〉 6= |0〉.

• The operator G := WUf ⊗ I2 is called a Grover iterate.



Computational Examples 111

Grover Algorithm

• The Grover algorithm applies the iterate G about π
4

√
2n times

and take the measurement.

|0〉n H⊗n

G G G

· · · 

|1〉 H · · ·

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _�

�

�

�

�

�

�

�

�

�

�

�
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

• One-step analysis:

⋄ Before the first G application,

|0〉n |1〉 ⇛
1√
2n

∑

x

|x〉H |1〉 .

⋄ After Uf ,

⇛
1√
2n
(
∑

x

|x〉 − 2 |a〉)H |1〉 .

⋄ After W ,

⇛ ((1− 4

2n
) |φ〉 + 2√

2n
|a〉)H |1〉

= ((
1√
2n

− 4√
23n

)
∑

x6=a
|x〉 + (

3√
2n

− 4√
23n

) |a〉)H |1〉 .

⋄ The main point of such a G application is that the proba-

bility of |a〉 is slightly increased. (Check to see that the

total probability is still added to one.)



112 Grover Algorithm

Basic Mechanism

• Use these two mechanism in the Grover iterate:{
Uf |a〉 = − |a〉 ,
Uf |φ〉 = |φ〉 − 2√

2n
|a〉 . (4.8)

{
W |φ〉 = |φ〉 ,
W |a〉 = 2√

2n
|φ〉 − |a〉 . (4.9)

• Apply G gate repeatedly to the general form

|Ψ〉 = s |φ〉 + t |a〉
with ( s√

2n
)2(2n − 1) + ( s√

2n
+ t)2 = 1.

• Therefore,

WUf |Ψ〉 = W (sUf |φ〉 + tUf |a〉)
= W (s(|φ〉 − 2√

2n
|a〉)− t |a〉)

= sW |φ〉 − (t +
2s√
2n
)W |a〉

= s |φ〉 − (t +
2s√
2n
)(

2√
2n

|φ〉 − |a〉)

= (s− 4s

2n
− 2t√

2n
) |φ〉 + (t +

2s√
2n
) |a〉 .

⋄ The probability for |a〉 is given by
{

( s√
2n

+ t)2, before G ,

( 3s√
2n

+ t− t
2n−1 − 4s√

23n
)2, after G .

(4.10)



Computational Examples 113

Dynamics of Probabilities

• Given s0 = 1 and t0 = 0, the Grover algorithm generates a

sequence of coefficients
{
sk+1 := sk − 4sk

2n
− 2tk√

2n
,

tk+1 := tk +
2sk√
2n

(4.11)

⋄ Show that the sequence (sk, tk) satisfies the relationship s
2+

2 st√
N
+ t2 = 1, which is an ellipse.

⋄ Rewrite the iteration in matrix form
[
sk+1

tk+1

]
=

[
1− 4

2n − 2√
2n

2√
2n

1

] [
sk
tk

]
. (4.12)

⊲ Eigenvalues 2n−2±2
√
1−2n

2n
are complex and have moduli 1.

⊲ The iterates (sk, tk) will not converge (cycle around the

ellipse).

• Find the first k that will maximize the probability for |a〉.
⋄ Do not iterate more than O(2n−1) times. (Why?)



114 Constructing Toffoli gate

4.5 Constructing the Toffoli gate

• For a reversible classical computer, it can be shown that at

least one 3-bit gate, such as the ccNOT, is needed to build up

general logical operations.

⋄ It is also known that such 3-bit gates cannot be built up out

of 1- and 2-bit gates.

• In a quantum computer, however, it is remarkable and impor-

tantl for the feasibility of practical quantum computation that

the quantum extension of this 3-qbit gate, such as the Toffoli

gate T, can be constructed out of a small number of 1- and

2-qbit gates.

• We will come back to work on this section later.


