Chapter 5

Applications

This is the final chapter discussing some known applications of our
theory. We shall first examine the mathematical problem. Then
we shall detail how the problem can solved in a quantum matter.
Obviously, there are many more unsolved problems, including the
conversion of conventional algorithms on a classical computer to
quantum computation. I believe that this is a area full of treasures
to be discovered or rediscovered.

e RSA encryption

e Period finding and Shor factorization

e Quantum Fourier transform.

e (Quantum algorithm for solving algebraic equations

e (Quantum algorithm for solving differential equations
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5.1 RSA Encryption

e Simon’s algorithm amounts to finding the unknown period a
of a function on n-bit integers that is periodic under bitwise
modulo-2 addition.

e A more difficult problem is to find the period r of a function f
on the “true” integers that is periodic under ordinary addition,
ie., f(z) = f(y) if and only if z = y(mod)r.

e Any computer that can efficiently find periods would be an enor-
mous threat to the security of both military and commercial
communications.,

e The RSA cryptosystem is a public key protocol widely used in
industry and government to encrypt sensitive information.

¢ The security of RSA rests on the assumption that it is diffi-
cult for computers to factor large numbers.

o There is no known (classical) computer algorithm for finding
the factors of an n-bit number in time that is polynomial in
n.
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Fermat Little Theorem

e Theorem: Let p be a prime number and a be any positive integer
which is not a multiple of p. Then

a’t =1 (mod p). (5.1)

o Claim that m?” — m = 0 (mod p) for any integer m.
> True if m = 1.
> Suppose that the claim is true for m = k. Observe that

p

(k1) —(k+1) = > <? ) kI —(k+1) = k" —k (mod p)
j=0

v" The mathematical induction kicks in.

> Take m = a. Then a” — a = a(a?~' — 1) = 0 (mod p).

> Since a is not divisible by p, a?~t — 1 =0 (mod p).

e Let p and g be two distinct prime number and a be any positive
integer not divisible by either p or ¢.

¢ No power of a is divisible by either p or q.
o By (5.1),

(a® )1 = 1 (mod p),
(a1 ' = 1 (mod q).
& The number aP~D=1) — 1 is divisible by p, ¢, and pq.
aP~ Ve — 1 (mod pg). (5.2)
> This is the basis of the RSA encription.
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Group Z/nZ

e Given a positive integer n, the set
Z/nZ = {a|l <a <mn,ged(a,n) =1} (5.3)
is called the multiplicative group of integers modulo n.

o If ged(a,n) = 1 and ged(b,n) = 1, then ged(ab,n) = 1. So
Z/nZ is closed under multiplication.

o If ged(a,n) = 1, then by the Bézout lemma there are inte-
gers x and y satisfying ax +ny = 1. Thus ax =1 (mod n).
(See also the Euclidean long division.)

o Taken=(p—1)(¢q—1) and ¢ € Z/nZ.

¢ Let d be the multiplicative inverse of c.

¢ Therefore, for some integer s,
cd=14+s(p—1)(¢—1).
o From (5.2), it holds that
gl se=D=1) —_ (mod pq).
¢ Take advantage of this simple relationship

b= a‘ (mod pq) = b” = a (mod pq). (5.4)
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Communication between Alice and Bob

e Suppose Alice (A) wants to send an encoded message so that
Bob (B) alone can read it, but Eve (E) always wants to eaves-
drop.

e Bob:
¢ Choose two large, say 200-digit, prime numbers p and ¢, and
a number ¢ which is coprime ton = (p — 1)(q — 1).

o Send Alice the product N = pq and c¢. These are the public
keys.

> Even if Eve knows about N, it is difficult to figure out p
and q.

o Compute the inverse d = ¢! (mod n), but keep it strictly
for himself for use in decoding.

e Alice:

o Encode a message (or a segment of a long message) by rep-
resenting it as a number a < N.

¢ Use the public keys, calculate b = a“ and send it to Bob.
e Bob:

o Upon receiving b, use d to calculate a = b? (mod pq).
o [ve:

o Try hard to factorize N = pq.
¢ Find the “period”.



120 RSA Encryption

Decoding by Eve

e Assume that Eve has intercepted the encoded message b.
o Since p and ¢ are large prime numbers, with good chance
that b is coprime to p and q, i.e., b € Z/(pq)Z.
o The group Z/(pq)Z has exactly pg — 1 — (p—1) — (¢ — 1)
elements. (Why?)

e Because b = a° and a = b?, the cyclic subgroups generated by
a and b, respectively, are identical.

o If r is the number of elements in the cyclic subgroup, then
rl(p—1)(g —1).
> b" = 1.
> By choice, ¢t (p — 1)(q — 1).
> ged(r,c) =1=c € Z/rZ.
o Over the group Z/rZ, ¢ has an inverse d = ¢~ (mod r).
ed =1 (mod 7).

e [f Eve can somehow find the value r, then
pd — (ac>J: a"™ = a(a”)* = a (mod pq).
e Given N and the intercepted b, define
f(z) :=0" (mod N). (5.5)
Find 7 such that f(z +r) = f(x).

¢ Is this a special case of the Simon problem?
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5.2 Quantum Fourier Transform

e The discrete Fourier transform (DFT) is the equivalent of the
continuous Fourier transform for signals known only at finitely
many instants separated by sample times.

e The quantum Fourier transform (QFT) assumes a similar form
but has an entirely different meaning.

e The fast Fourier transform (FFT) exploits the structure of DE'T
and is critical in modern applications.

e The QFT is fast in its parallelism.
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Quick Recap of Classical DFT

e Given samples { fo, f1,..., fv_1} of a signal at fixed intervals
in the time domain, the DFT in the frequency domain is defined
by

N—-1
1 27 -

g::—Eje—W’f . j=0,1,....,N —1. 5.6

J \/Nkzo fk‘ J ( )

o The relationship (5.6) can be expressed as
§=Wf. (5.7)

> The coefficient matrix W is unitary. (Prove this.)
¢ Exploiting the cyclic nature in W leads to the fast Fourier
transform (FFT) which is one of the most important algo-
rithms with many applications.
> At the cost of O(N logy N) computations.
> Usually prefer that N = 2. Therefore, the overhead of
FFET is O(n2").
v The significance of QFT is that the overhead is O(n?),
i.e., exponentially faster than fast.

e [t is easy to check the inverse relationship (IDFT):
| o=
= VR j=0,1,...,N —1. 5.8

e Some scholars/books weight the coefficient matrices differently
for the convenience of trigonometric interpolation.
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n-qubit QFT

e Let NV := 2" The n-qubit quantum Fourier transform (QFT)
is a unitary transformation U pp defined by

1 N—-1

_2m
Ugrr k), = == D e ¥ i), (59)
=0

e Suppose that g : Zy — C. Consider its vector representation

Then

¢ The Fourier coefficients of ¢ are defined as

B(j) = \/% 2_: g(k)e "Nk, (5.10)
k=0

> In complete sync with (5.6).
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Confusing Notation

e Conventions for the sign of the phase factor exponent vary.
Some literature prefers to define the n-qubit QFT via

Uley 1), - fz ¥R, (5.11)

o This is indeed a resemblance to the IDFT in (5.8).
e Though look alike, do not confused UTFT with (3.12) where

N-1

n|,; 1 E
H" |5), = \/—NZG k),
k=0

o The product jk in (5.9) is the ordinary multiplication, but
the product j - k£ is the bitwise inner product modulo 2.

o €™k = (1% are £1, but e ¥k has many phases.
e An important question is to show that an n-qubit QFT can be

implemented out of 1-qubit and 2-qubit unitary gates and that
the number of gates grows only quadratically in n.

¢ This realization, at least in theory, will become clear at the
end of of the next chapter on phase estimation.
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Using QFT for Period Finding

e Consider as a demo the case n = 3 where we are looking for the
period of f:{0,1}% — {0,1}°. (Simon Problem)

e Start with the initial state

® _ 1 ’ :
[Wp) :=H ’ ‘O>3 = %jzo |]>3-

e Apply Uy to obtain
1 7
1) = U (H™0),]0);) = 7 ]Z; 1703 [£ () -

o All output registers are equally weighted.
e Apply the QF'T to obtain

7
W) = Ugrrl(92)) = 5 30 3¢9 1), )y

e Suppose that the period is p = 2. Define the abbreviation

{a = f(0) = f(2) = f(4) = [(6),
b= f(1) = f(3) = f(5) = f(7).

& Check the second summation sy 1= 2]7.:0 o 1f(7))s.
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— 2k
e Define wy, := e 3%, Then
0 2 4 6 1 3 ) 7
sk = la)s (wy, + wi +wy, + wp) + [b)3 (wy, + wi + Wy + wy).

)3 +410)5.
o sy =4la); —41|b)s.
o All other s, = 0.

o s9=4la

e In short, after the quantum Fourier transform, we see a redis-
tribution of the weights, i.e.,

Wy) = %(’O>3 |a); +10)5[0)5 + |4)5 [a); — [4)310)3)-

If we take the measurement, input registers |0) and |4) will show
up with equal probability which is a consequence of p = 2.

e The cancelation observed here is more extensively exploited in
Shor’s factorization algorithm.
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General Algorithm for N = 2"

e Prepare the uniform superposition of all basic |x).
W) Z ) .
CL’EZN
e Apply the oracle Uy to obtain
U1) = —— ) |2 |f(z
\/7 TELN

e Measure an output register and take record of the input register
of the collapsed state.

e Apply QFT to the input register.

e Repeat enough times to create equations for estimating the pe-
riod p.
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Analysis |

e Denote the image set of f by O.

¢ O contains exactly p elements.

o For each ¢ € O, define the indicator function f. : Zy —

10,1} by
1 if f(x) =c,

0 otherwise.

i) =1

e Rewrite |Vy) as
1
V1) = ;J—W%%(W) ) [ f(2)) -

¢ The probability of observing ¢ is ]% for every ¢ € O. (Why?)

¢ At the observation ¢, the system collapse to

9 = /2 S Gl

.TJEZN

- %N S (VBhz) [2)[e)

TELN

e Which output register ¢ is to be measured?
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Periodic Spike Function

e Given g : Zy — C, suppose g(k) = g(k+T). Then
1

N—-1 1 N— -
Ugrr(g) = Z:Ci(k?)— e "NIF |5,

k=0 N =
N—1 1 N—1

= (—N g(k +T)e "My |5)
=0 k=0
N—1 1 N—1 )

=) (=Y gly)e Ty |5)
— N “—=
7=0 y=0
N—-1 )

= ) NS4 [4)
=0

¢ The Fourier coefficients of g and g have the same magnitude.
e Suffice to concentrate on one output register c.
e Without loss of generality, we take ¢ = f(0).

o fe(x) =1 only at the set H = {0, p,2p,3p,...}.

o H has exactly % elements.
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Analysis 11

— [y N 2N
e Define D = {O7p’ ) ,} C Zy.

o D has exactly p elements. (Why?)
e Apply the QFT to the input register of |®).

¢ The input register at observation c is

Z'EZN
o Look for
N—-1
Ugrr(g) =) 6(j)1J)
7=0

o By (5.10), the Fourier coefficients are given by

N-1
1 1 27
®<J> = = I~ pfc<k>€_zwjk'
w2 TwY
e T'wo cases:
olIfy €D,
. 1 1 2. /PN 1
6(j)=—= ) —=pe N =Yo— = —
VPNl N b
olIf y €D,
&(j) =0.
> Note that Y5 [B(5)]* = 1.
> No more probability for j &€ D.

e S0 what to do with these results?
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Analysis 11

e We measure each 5 € D with probability % and others with
probability 0.

e j € Dif and only if jp =0 (mod N).

¢ That is, we sample a uniformly random 7, which are multi-
ples of the ratio %, such that jp =0 (mod N).

e This is similar to what has happened in Simon algorithm!

¢ In the Simon algorithm, we sampled a uniformly random
such that z; L p under the dot product of two n-qubit
modulo 2.

¢ Here, we consider multiplication modulo /NV.

e How to find the ratio m = %?

¢ The algorithm samples a random integer multiple of m.

o Suppose we have two random samples, which we can write
am and bm.

o Note that ged(am; bm) = ged(a; b)m, if ged(a; b) = 1, then
m is found.

e If a and b are uniformly and independently sampled integers
from Zy, what is the probability that ged(a;b) = 17
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5.3 Shor Factorization

e Shors factorization algorithm is used to factor numbers into their
components (which can potentially be prime).

e [t is one of the most significant examples in which a quantum
computer demonstrates enormous power surpassing its classical
counterpart.

o The algorithm does the factorization in roughly O(n?) quan-
tum operations.

¢ In contrast, the best known classical algorithms are expo-
nential.

e Since the basis of most modern cryptography system is relying
on the impossibility of exponential cost of factorization, being
able to factor in polynomial time on a quantum computer has
attracted significant interest.
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Basic Idea

e Given positive integers x and N, x < N, x is coprime to N,

the order of x (mod V) is the least positive integer r such that
" (mod N) = 1.

o Since « (mod N) can only take a finite number of different
values, z must have a finite order, denoted by ordy(z).

o The order ordy(x) divides the order of Z/NZ.
e A basic idea of Shor’s algorithm:

o Suppose p and ¢ are prime number and N = pq.
¢ Choose some random x which is co-prime of N

¢ Use quantum parallelism to compute x” for all r simultane-
ously. (This is only an easy brute force way. It could be
done in a better way.)

o Interfere all of the 2"’s to obtain knowledge about its period.

¢ Use this period to find the factor p or ¢ of V.
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Order Finding = Factorization

e A quantum computation is needed to find the order r, which
will be discussed later.

e [f the order r of x is odd, choose another random =x.

e Suppose an even order r is found. Write
("2 = 1) ("> +1)=2"— 1 =0 (mod N).

oIf 2"/2+1 =0 (mod N), then ged(2™/? — 1, N) = 1; choose
a different x.

o If 27/2 410 (mod N), then
d = ged(z"? =1, N)

must be either p or q.

> 2"/2 — 1 cannot be a multiple of IN; otherwise, T2 =

1 (mod N), contradicting ordy(x) = .

> 2"/2 — 1 contains either p or q.
e No need to assume N = pq.

¢ The number d gives us a nontrivial factor of V.

¢ Factorize d and % recursively and obtain all prime factors.

¢ We can efficiently test primality. (How?)
e Suppose N has at least two distinct prime factors. If z € Z/NZ

is selected randomly, then the probability that ordy(x) is even
and is at least %
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Order Finding

e Choose n large enough such that N? < Q := 2" < 2N?. Define
[ Zg — Zy via
f(2) := 2% (mod N).
o Finding ordy(x) is almost equivalent to finding the period
of f.
flz+7) = f(2).

o However, r does not necessarily divide (). This is the main
difference between order-finding and period finding.

e For a measurement of the output register c,

o It appears only D times where D is either L%J or (%}
¢ The system collapse to

|CD :_\/72 fc >

ZEZQ

o Replace the set D used in Analysis [I by D .= {0, D, 2D, ...}.
o Apply the QFT to |®) to obtain

Q-1
(Ugrr @ 1)(|9)) Z &(j
7=0

with the Fourier coefficients

> This is not as simple as that for the period- ﬁndmg
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Continued Fraction

(This is to be completed later.)
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5.4 Solving Linear Algebra Problems

137

e Figenvalue Problem
e Quantum Phase Estimation

e System of Linear Equations
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Eigenvalue Problem

e Given a unitary operator U that operates on m qubits with an
eigenvector |W) such that

U ‘\I/> _ ez27rw ‘\I/> :
estimate w.

o With high probability:;

o Within additive error e;

o Using O(log %) qubits:

o Using O(2) controlled-U operations.

e The following process U,pqse that does the transformation
0)" W) — |w) W)
is called a quantum phase algorithm.

o w is an estimate of w with known error.
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Setup

e Create superposition:

@) = (H™" @ I)(|0)™" 7)) = \/%((D + 1) V) .

e Apply controlled-U?’ gates, 7 = 0,1,...,n — 1, sequentially
according to the circuit:

0) —|H °

0) —H . |D)
0) —H °

0) —H T

V) ——— v U2 U Ut W)
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o First, apply the controlled-U?":

wy % ;27(‘@ +1))%D @ (|0) W) + 1) U W)
= (\/12—n(!0> +[1))707D @ (0) + €2 (1)) @ [9)

¢ Followed by the controlled-U?

cU21 1
=
A /2n

o At the end, receive the identity for the input register:

(J0)+[1) 2 @ ([0) +e27 | 1)) @ (|0) +e272 1)) @ [ W) .

2"—1

- 1 1212 _ 1 12mw
(]XI)E(IOHe 1)) = \/27;6 “k), . (5.12)

> Prove the identity!

> Same problem, but without the knowledge of |W).
> Estimate w.
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Quantum Phase Estimation

e Problem: Given a state
m_1

\/27 Z e 2™k k) (5.13)

obtain a good estimate of the phase parameter w.

e Some preliminary facts:

¢ Because 0 < w < 1, can express

di do
= (.didods . . .)o = —
w = (.didads . . .)s 5 + 53 52 +.
¢ Then
6@27?(2kw) _ 6@27r(d1d2d3...dk.dk+1dk+2...)2

6@27T(0.dk+1dk+2...)2

o Therefore, can rewrite |®) as

o 1
) = ® 510y + eBrlhmimitiosaz 1),
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An Example

e Consider the case n = 2 and w = (.dyds)s.

o By (5.12),
B ‘O> + 6@27?(.d2)2 |1>
o) - (2 o

e Applying H to the first qubit, we see that
0) + et 1) ) +[1) , [0) — 1)
V2 2 2

e To determine d;,

‘O> + 6@27?(.d1d2)2 |1>

V?2

)

H( (—1)% = |dy) .

o If dy = 0, obtain d; by applying H to the second qubit.
o If dg = 1,
> Define the 1-qubit phase rotation operator Ro

Ry

]O> + 6227r(.d11)2 ’1>) B ‘O> + 6227r(.d1)2 ’1>
V2 V2 |
o This is a controlled-R; ' gate.

e The phase can be recovered exactly from the circuit:

|0>_'_6227r(.d2)2‘1>

75 —H |d)
et2m(.dyds)
0)+ \/51 22|1) H— |d)
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(zeneralization

e Consider the case n = 3 and w = (.dyda2d3)s.
o By (5.12),

‘O> + 6227r(.d3)2 ’1> ]O> + 6127r(.d2d3)2 ‘1> ]O> + €z2w(.d1d2d3)2 ‘1>

W) =

7 3( 7 )®(

e Define the phase rotation operator Ry by

| I 0
Ry = 0 S| (5.15)

V2

e Build the circuit as

‘0>+6227r(.d3)2|1>

/2 —H \ ¢ ‘d3>
|0>+622w\(/-;2d3)2|1> H ‘d2>

‘0>+€z27r(j%d2d3)2|1> /753_1 HI— ‘d1>

e Note that the above operations does the inverse of QFT.

251
1
ﬁ Z 6127T(.d1d2d3)2]€ |k>n N ‘d1d2d3> )
k=0
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Inverse QFT

e Recall the linear relationships F = W in the DFT and f =
W*F in the IDFT.

o Is there a similar inverse relationship to the QFT (5.9)7

T

e In the above construction, w is of the form & where x is an

n-qubit, i.e.,
2n_1

Z TR |z). (5.16)

A /2n
¢ By applying the circuit in reverse order whereas every gate

is replaced by its inverse, we have a circuit for the QFT'.

& Show that the transformation (5.16) can be expressed as the
map
2" 1
UQFT ’.] : \/27 Z e_ZQRJk ‘k (517)

e What if w is not of the form 55,

say, what if w is irrational?
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Quantum Phase Algorithm

e Applying the QFT to the right side of (5.12) yields
2n_1

UQTF|CD> _ \/27 Z zZmukU FTVf>

2"1 2"—1

1470 1 —1
2&)]{7\/2726 2n]]{7’]

=0
-1 2"—1

1 2k (2N — g .
= o (262 7 (2 j)) )0

j=0 k=0
e Approximate the value of w € [0, 1] as follows:
¢ Round 2"w to the nearest integer, say;,
2"w = a + 2",
with 0 < 6 < 5.

¢ The final state appears in the form

2n_1 2]
- Z Z 227r (x—a) 227r5k |$> ® ‘\P>
=0 k=0
© Make a measurement. The probability of yielding = a is
given by
2”2—:1 1, if 0 =0,
Pr(z =a) 6227“% = ng |2
92n _ 12w .
2 s || 5 0 #0.

> Can prove that for § # 0, Pr(a) > % ~ (.40.
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System of Linear Equations

e Solving linear systems is fundamental in virtually all areas of sci-
ence and engineering. A quantum algorithm for linear systems
of equations has the potential for widespread applicability.

e Thus far, the quantum algorithm can only work for Hermitian
matrices, preferably large and sparse.

e Can provide only a scalar measurement on the solution vector.
Not the values of the solution vector itself.

o What to expect from a quantum machine when trying to
determine the intersection of two lines? Can quantum com-
puting determine the geometry?
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Quantum Linear System Problem

e Given an N x N Hermitian matrix A, a unit vector b, and an
operator M, find the value

(x| M |x)
where x is a solution to the system

Alx) = [b).

e [t has been declared that the quantum algorithm has an expo-
nential speedup, O(logy, N), as opposed to O(N?) of the classical
Gaussian elimination method. However, we must clarify some
assumptions:

o To merely read in the entries of the vector |b) will cost
O(N). So |b) is assumed to be already prepared by some
other means.

o As a state, |[b) must be normalized.

o If we have a means to measure one component of |x), the
system collapses. If we want to measure all components, we

must repeat the algorithm N times. This is exponentially
more than O(logy N).

¢ The algorithm is suitable only for the class of quantum linear
system problems (QLSP).
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Basic Steps

o If A is Hermitian, then U := e is unitary.

¢ The eigenvalues A; of A must be real.
¢ The eigenvalues of A are precisely the phases of U.

o A and U have the same set of eigenvectors |U;).

e Apply the phase estimation gate Uppase to W;, we have an esti-
mate A;j of \;.

0)" [W5) —

Aj> ;)
without knowing | ;).

e Expand |b) in terms of the basis of eigenvectors,

b) = > 6 10,).

¢ Via Uppgee, We obtain the transformation

|m%i@mwm.
j=1

o Add a third register (ancilla) to make a controlled rotation ¥

~

)\j> to obtain

conditioned upon

>\j> W) —

MWM14§mH%m.

¢ The control is per y and, hence, this is parallelism.

o 7, is for normalization.



Applications 149

e Together, the state is now
N

2.5
j=1

e Undo (reverse) the phase estimation to obtain

XM%Ml%%%H%M)

N
0)°" 37 85 105 (1= (31210 + 54 1))

J J

e Employ an amplifying operator to enlarge the magnitude of |1).
The second term is proportional to

N
_ 1
A7 b) = B ).
=t "/

¢ The whole process is nothing but an analogue of the linear

algebra.
> If A= QAQ*, then
A7l =Nt
> Therefore,
_ —1 *
x=QA " Qb .
By Bn

e Note that only a quantum description of the solution vector is
output from HHL.

¢ For applications that need a full classical description of x,
this may not be satisfactory.
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5.5 Differential Equations

e (lassical ODE Methods

e Quantum Formulations
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Classical ODE Methods

e Differential equations are ubiquitous in science and engineer-
ing. Solving differential equations with high precision is of
paramount importance.

e Both the theory and techniques of numerical ODE methods have
reached the state-of-the-art in digital computation.

¢ Can be programmed to automatically adapt optimal step
sizes and orders along the integration.

o Efficient for fast integration and effective for meeting error
tolerance.

e T'wo main basic notions:

¢ Nonlinear one-step methods.

> Self-sufficient.
> Can be used for help generate starting values.

> More expensive.
¢ Linear multi-step methods.

> Require starting values.

> Much cheaper with higher order precision.
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Fuler Method

e The simplest numerical method,

o If y(z) is a solution, then
Y(wn + h) = y(wn) + hy () + O(?)

is the Taylor series expansion of y(x, + h) near x,,.

o Suppose the accepted solution at x, is given y(x,) ~ Yy,
then the truncated Taylor series suggests a scheme:

Ynt1l = Yn + hf(l’n, yn) (518>

should be a reasonable approximation.
e (Questions always asked in numerical ODE:

o What is the magnitude of the global error

€n = Yn — Y(@n)
at the n-th step?
o (Stability) How does the error propagate?
o (Precision) How does the step size h affect the accuracy?

¢ How to control the step size and error growth to get the best
possible accuracy?
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An Improved Idea

e Consider a 2-stage scheme:

¢ Take one half-step Euler shooting:

h
Yngl == Yn + §f($n> Yn)-

¢ Use the midpoint, instead of the endpoint, to estimate the
slop:
f?’H—% = f (xn+%’yn+%) :

o Take one full Euler shooting:

h h
Ynt1l = Yn T+ hf <xn + 57 Yn T §f<xn7 YH>) .

e Note that there are two function evaluations involved.
¢ This is a smart way to implement the Taylor’s series expan-
s1on.
o Can match up the terms up to O(h?).

¢ The method has one-order better precision than the Euler
method.
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Runge-Kutta Methods

e A general R-stage Runge-Kutta method is defined by the one-
step method:

Yn+1 = Yn + h¢(l’n, Yn, h) (519)
where
R
¢(l’n, Yn, h) — Z crk; (520)
r=1

R
g c, = 1
r=1
R

ke = f(zo+ah,yy +h Y bk  (521)

s=1
g b.s = a,.

e [t is convenient to characterize the scheme in the Butcher array:

a; |byy bio ... bip
as b21 b22 b2R
ar |bri bra ... brp

C1 Co ... CR

e Lots of research has been done in the past few decades to find
out the best combinations of these coefficients.



Applications

Some Popular RK Schemes

e T'wo fourth-order 4-stage explicit Runge-Kutta methods

0

1/2

1/2
1

0
1/3
2/3

1

0

1/2 0

0 1/2 0

0 0 1 0
1/6 2/6 2/6 1/6

0

1/3 0

1/3 1 0

1 1 1 0

1/8 3/8 3/8 1/8

e The unique 2-stage implicit Runge-Kutta method of order 4:

1/24/3/6 1/4 1/4+/3/6
1/2 —+/3/6|1/4—+/3/6 1/4
12 1/2

e A 3-stage semi-explicit

0
1/2
1

Runge-kutta method or order 4:

0 0 0
1/4 1/4 0
0 1 0

1/6 4/6 1/6



156 Differential Equations

Linear Multi-step Methods

e A linear (p+1)-step method of step size h is a numerical scheme
of the form

p p
Yntl = Z aiYn—i +h Z bi fr—i (5.22)
i=0

i=—1
where xp = xo + kh, fr_i == f(zn_i, yn_i), and a]% - b]% £ 0.
¢ Note that the information used involves past values the ap-
proximate solution g; and its first order derivative f;.
o If b_1 = 0, then the method is said to be explicit; otherwise,
it is implicit.
> In order to obtain y,,41 from an implicit method, usually
it is necessary to solve a nonlinear equation.

> Implicit methods are more expensive.
> Implicit methods has better stability.

e The Adams family:

p
Ynt1l = Yn T+ Z Bpifn—i (523)

i=—1

¢ Obtained from the Fundamental Theorem of Calculus
Tn+1
aw) ~vlz) = [ floy(o)ds.

o The unknown f(x,y(x)) is approximated by polynomial in-
terpolation.
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Some Popular Multi-step Schemes

e Some Adams-Bashforth methods:

Boi 1

201 3 -1

1205 | 23 -16 5

2By | 55 59 37T -9
72004 | 1901 -2774 2616 -1274 251

e Some Adams-Moulton methods:

-1 0 1 2 3
Boi | 1
20 1 1
12651 5 8 -1
2485, 1 9 19 -5 1
72004 | 251 646 -264 106 -19
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Quantum Formulation

e A quantum algorithm for general nonlinear differential equa-
tions might be too ambitious.

¢ The complexity of the simulation scaled exponentially in the
number of time-steps.

¢ The quantum nonlinear Schrodinger equation is nonlinear in
the field operators, but it is still linear in the quantum state.

© Most operators act linearly on quantum superpositions.
e A more natural application for quantum computers is linear
differential equations:

W ANy b v =yeeCh. (524

e Do we really have to solve an ODE by quantum algorithms?

¢ The complexity of solving the differential equation in the
classical algorithm must be at least linear in V.

¢ One goal of the quantum algorithm is to solve the differential
equation in time O(poly(log N)). (Is this really
important?)

¢ Another goal is to provide efficient scaling in the evolution
in time 7.

¢ Can the numerical analysis community accept quantum al-
gorithms? (In terms of precision and
stability)
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Feynman Clock

e If a quantum system moves stepwise forward and then backward
in time in equal increments, it would necessarily return to its
original state.

e Traditional algorithms utilize parallelization in space.

o A supercomputer comprising many processors spatially dis-
tributes and advances the problem in single temporal incre-
ments.

e On a quantum machine, think about the possibility of setting
up a calculation that is parallel in time.

¢ Different points in time has to be stmultaneously calculated
ON Many processors.
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Key Idea

o Assume t; =ty + jh, yr = y(t;), and a total of IV; steps are

taken over [tg, T'] (so Ny = TKJO).

e Wish to obtain the final state in the form

) = DIt} 1y5) (5.25)

¢ Temporarily ignore the normalization.

¢ By measuring the time register, we get the approximation
Y-

¢ The probability of obtaining the final time is small
(How to boost the probability?)

1
Ni+1°

e Tty the Fuler's method:
Yo+l = Yn T h(A(tn>YH + bn)

e Code the solution at ys via

I 0 0 0 0] [y

(I + A(to)h) I 0 0 0|y b(to)h
0 —([ + A<t1>h> I 0 0 Yo | = b(tl)h
0 0 0 —I 1 Y4

¢ Note that y3 = y4 = y» artificially. Therefore, the proba-
bility of getting y» is boosted from % to %
¢ This linear system is to be solved via the HHL algorithm.
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Criticisms

e [s this a good idea? (All because of the uncertainty in
quantum computing.)

e 'T0 achieve high precision, /V; has to be extremely large.

e 'To know the intermediate solutions, lots of measurements need
be made.

e How to deal with stability? The error will grow.
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