Chapter 5

Applications

This is the final chapter discussing some known applications of our theory. We shall first examine the mathematical problem. Then we shall detail how the problem can solved in a quantum matter. Obviously, there are many more unsolved problems, including the conversion of conventional algorithms on a classical computer to quantum computation. I believe that this is a area full of treasures to be discovered or rediscovered.

- RSA encryption
- Period finding and Shor factorization
- Quantum Fourier transform.
- Quantum algorithm for solving algebraic equations
- Quantum algorithm for solving differential equations

5.1 RSA Encryption

- Simon's algorithm amounts to finding the unknown period a of a function on n -bit integers that is periodic under bitwise modulo-2 addition.
- A more difficult problem is to find the period r of a function f on the "true" integers that is periodic under ordinary addition, i.e., $f(x) = f(y)$ if and only if $x = y \pmod{r}$.
- Any computer that can efficiently find periods would be an enormous threat to the security of both military and commercial communications.
- The RSA cryptosystem is a public key protocol widely used in industry and government to encrypt sensitive information.
	- \diamond The security of RSA rests on the assumption that it is difficult for computers to factor large numbers.
	- \diamond There is no known (classical) computer algorithm for finding the factors of an n -bit number in time that is polynomial in n .

Fermat Little Theorem

• Theorem: Let p be a prime number and a be any positive integer which is not a multiple of p . Then

$$
a^{p-1} = 1 \pmod{p}.
$$
 (5.1)

- \Diamond Claim that $m^p m = 0$ (mod p) for any integer m.
	- \triangleright True if $m = 1$.

 \triangleright Suppose that the claim is true for $m = k$. Observe that

$$
(k+1)^p - (k+1) = \sum_{j=0}^p \left(\! \begin{array}{c} p \\ j \end{array} \! \right) k^{p-j} - (k+1) = k^p - k \ (\mathrm{mod} \ p)
$$

 \checkmark The mathematical induction kicks in.

- ⊳ Take $m = a$. Then $a^p a = a(a^{p-1} 1) = 0$ (mod p).
- \rhd Since *a* is not divisible by *p*, $a^{p-1} 1 = 0$ (mod *p*).
- Let p and q be two distinct prime number and q be any positive integer not divisible by either p or q .
	- \diamond No power of a is divisible by either p or q. \Diamond By (5.1) ,

$$
(a^{q-1})^{p-1} = 1 \pmod{p},
$$

$$
(a^{p-1})^{q-1} = 1 \pmod{q}.
$$

 \diamond The number $a^{(p-1)(q-1)} - 1$ is divisible by p, q, and pq.

$$
a^{(p-1)(q-1)} = 1 \pmod{pq}.
$$
 (5.2)

⊲ This is the basis of the RSA encription.

Group $\mathbb{Z}/n\mathbb{Z}$

• Given a positive integer n , the set

$$
\mathbb{Z}/n\mathbb{Z} := \{a | 1 \le a < n, \gcd(a, n) = 1\} \tag{5.3}
$$

is called the multiplicative group of integers modulo n .

- \Diamond If gcd $(a, n) = 1$ and gcd $(b, n) = 1$, then gcd $(ab, n) = 1$. So $\mathbb{Z}/n\mathbb{Z}$ is closed under multiplication.
- \Diamond If gcd $(a, n) = 1$, then by the Bézout lemma there are integers x and y satisfying $ax + ny = 1$. Thus $ax = 1$ (mod n). (See also the Euclidean long division.)
- Take $n = (p-1)(q-1)$ and $c \in \mathbb{Z}/n\mathbb{Z}$.
	- \Diamond Let d be the multiplicative inverse of c.
	- \diamond Therefore, for some integer s ,

$$
cd = 1 + s(p - 1)(q - 1).
$$

 \diamond From (5.2), it holds that

$$
a^{1+s(p-1)(q-1)} = a \pmod{pq}.
$$

 \diamond Take advantage of this simple relationship

$$
b := a^c \pmod{pq} \Rightarrow b^d = a \pmod{pq}.
$$
 (5.4)

Communication between Alice and Bob

- Suppose Alice (A) wants to send an encoded message so that Bob (B) alone can read it, but Eve (E) always wants to eavesdrop.
- Bob:
	- \Diamond Choose two large, say 200-digit, prime numbers p and q, and a number c which is coprime to $n = (p - 1)(q - 1)$.
	- \Diamond Send Alice the product $N = pq$ and c. These are the *public* keys.
		- \triangleright Even if Eve knows about N, it is difficult to figure out p and q .
	- \diamond Compute the inverse $d = c^{-1}$ (mod *n*), but keep it strictly for himself for use in decoding.
- Alice:
	- ⋄ Encode a message (or a segment of a long message) by representing it as a number $a < N$.
	- \diamond Use the public keys, calculate $b = a^c$ and send it to Bob.
- Bob:
	- \diamond Upon receiving b, use d to calculate $a = b^d$ (mod pq).
- \bullet Eve:
	- \diamond Try hard to factorize $N = pq$.
	- \diamond Find the "period".

Decoding by Eve

- Assume that Eve has intercepted the encoded message b.
	- \Diamond Since p and q are large prime numbers, with good chance that b is coprime to p and q, i.e., $b \in \mathbb{Z}/(pq)\mathbb{Z}$.
	- ↑ The group $\mathbb{Z}/(pq)\mathbb{Z}$ has exactly $pq 1 (p 1) (q 1)$
elements. (Why?) elements.
- Because $b = a^c$ and $a = b^d$, the cyclic subgroups generated by a and b, respectively, are identical.
	- \Diamond If r is the number of elements in the cyclic subgroup, then $r|(p-1)(q-1).$ \triangleright b^r = 1. \triangleright By choice, $c \nmid (p-1)(q-1)$. $\rhd \gcd(r, c) = 1 \Rightarrow c \in \mathbb{Z}/r\mathbb{Z}.$ \diamond Over the group $\mathbb{Z}/r\mathbb{Z}$, c has an inverse $\widetilde{d} = c^{-1}$ (mod r). $c\tilde{d} = 1$ (mod r).
- If Eve can somehow find the value r , then

$$
b^{\widetilde{d}} = (a^c)^{\widetilde{d}} = a^{1+kr} = a(a^r)^k = a \pmod{pq}.
$$

• Given N and the intercepted b , define

$$
f(x) := b^x \pmod{N}.
$$
 (5.5)

Find r such that $f(x + r) = f(x)$.

⋄ Is this a special case of the Simon problem?

5.2 Quantum Fourier Transform

- The discrete Fourier transform (DFT) is the equivalent of the continuous Fourier transform for signals known only at finitely many instants separated by sample times.
- The quantum Fourier transform (QFT) assumes a similar form but has an entirely different meaning.
- The fast Fourier transform (FFT) exploits the structure of DFT and is critical in modern applications.
- The QFT is fast in its parallelism.

Quick Recap of Classical DFT

• Given samples $\{f_0, f_1, \ldots, f_{N-1}\}$ of a signal at fixed intervals in the time domain, the DFT in the frequency domain is defined by

$$
\mathfrak{F}_j := \frac{1}{\sqrt{N}} \sum_{k=0}^{N-1} e^{-i\frac{2\pi}{N}jk} f_k, \quad j = 0, 1, \dots, N-1.
$$
 (5.6)

 \diamond The relationship (5.6) can be expressed as

$$
\mathfrak{F} = W\mathbf{f}.\tag{5.7}
$$

 \triangleright The coefficient matrix W is unitary. (Prove this.)

- \diamond Exploiting the cyclic nature in W leads to the fast Fourier transform (FFT) which is one of the most important algorithms with many applications.
	- \triangleright At the cost of $O(N \log_2 N)$ computations.
	- \triangleright Usually prefer that $N = 2^n$. Therefore, the overhead of FFT is $O(n2^n)$.
		- \checkmark The significance of QFT is that the overhead is $O(n^2)$, i.e., exponentially faster than fast.
- It is easy to check the inverse relationship (IDFT):

$$
f_j := \frac{1}{\sqrt{N}} \sum_{k=0}^{N-1} e^{i\frac{2\pi}{N}jk} F_k, \quad j = 0, 1, \dots, N-1.
$$
 (5.8)

• Some scholars/books weight the coefficient matrices differently for the convenience of trigonometric interpolation.

Applications 123

• Let $N := 2^n$. The *n*-qubit *quantum Fourier transform (QFT)* is a unitary transformation U_{FT} defined by

$$
\mathbf{U}_{QFT} |k\rangle_n := \frac{1}{\sqrt{N}} \sum_{j=0}^{N-1} e^{-i\frac{2\pi}{N}jk} |j\rangle_n.
$$
 (5.9)

• Suppose that $g : \mathbb{Z}_N \to \mathbb{C}$. Consider its vector representation

$$
\mathbf{g} = \sum_{k=0}^{N-1} g(k) \left| k \right\rangle_n.
$$

Then

$$
\mathbf{U}_{QFT}(\mathbf{g}) = \sum_{k=0}^{N-1} g(k) \frac{1}{\sqrt{N}} \sum_{j=0}^{N-1} e^{-i \frac{2\pi}{N} jk} |j\rangle_n \n= \sum_{j=0}^{N-1} \left(\frac{1}{\sqrt{N}} \sum_{k=0}^{N-1} g(k) e^{-i \frac{2\pi}{N} jk} |j\rangle_n \n= \sum_{j=0}^{N-1} \mathfrak{G}(j) |j\rangle_n.
$$

 \diamond The Fourier coefficients of g are defined as

$$
\mathfrak{G}(j) := \frac{1}{\sqrt{N}} \sum_{k=0}^{N-1} g(k) e^{-i\frac{2\pi}{N}jk}.
$$
 (5.10)

 \triangleright In complete sync with (5.6).

Confusing Notation

• Conventions for the sign of the phase factor exponent vary. Some literature prefers to define the *n*-qubit QFT via

$$
\mathbf{U}_{FT}^{\dagger} \left| j \right\rangle_n := \frac{1}{\sqrt{N}} \sum_{k=0}^{N-1} e^{i \frac{2\pi}{N} j k} \left| k \right\rangle_n. \tag{5.11}
$$

 \diamond This is indeed a resemblance to the IDFT in (5.8) .

• Though look alike, do not confused $\mathbf{U}_{FT}^{\dagger}$ with (3.12) where

$$
\mathbf{H}^{\otimes n} |j\rangle_n = \frac{1}{\sqrt{N}} \sum_{k=0}^{N-1} e^{i\pi j \cdot k} |k\rangle_n.
$$

- \Diamond The product *jk* in (5.9) is the ordinary multiplication, but the product $j \cdot k$ is the bitwise inner product modulo 2. $\diamond e^{i\pi j \cdot k} = (-1)^{j \cdot k}$ are ± 1 , but $e^{i\frac{2\pi}{N}}$ $\frac{2\pi}{N}jk$ has many phases.
- An important question is to show that an n -qubit QFT can be implemented out of 1-qubit and 2-qubit unitary gates and that the number of gates grows only quadratically in n .
	- ⋄ This realization, at least in theory, will become clear at the end of of the next chapter on phase estimation.

Using QFT for Period Finding

- Consider as a demo the case $n = 3$ where we are looking for the period of $f: \{0, 1\}^3 \to \{0, 1\}^3$. (Simon Problem)
- Start with the initial state

$$
|\Psi_0\rangle := \mathbf{H}^{\otimes 3} |0\rangle_3 = \frac{1}{\sqrt{8}} \sum_{j=0}^7 |j\rangle_3.
$$

• Apply \mathbf{U}_f to obtain

$$
|\Psi_1\rangle := \mathbf{U}_f(\mathbf{H}^{\otimes 3} |0\rangle_3 |0\rangle_3) = \frac{1}{\sqrt{8}} \sum_{j=0}^7 |j\rangle_3 |f(j)\rangle_3.
$$

 \diamond All output registers are equally weighted.

• Apply the QFT to obtain

$$
|\Psi_2\rangle := \mathbf{U}_{QFT}(|\Psi_1\rangle) = \frac{1}{8} \sum_{j=0}^{7} \sum_{k=0}^{7} e^{-i\frac{2\pi}{8}jk} |k\rangle_3 |f(j)\rangle_3
$$

=
$$
\frac{1}{8} \sum_{k=0}^{7} |k\rangle_3 (\sum_{j=0}^{7} e^{-i\frac{2\pi}{8}jk} |f(j)\rangle_3).
$$

• Suppose that the period is $p = 2$. Define the abbreviation

$$
\begin{cases}\na := f(0) = f(2) = f(4) = f(6), \\
b := f(1) = f(3) = f(5) = f(7).\n\end{cases}
$$

 \diamond Check the second summation $s_k := \sum_{j=0}^{7} e^{-i\frac{2\pi}{8}}$ $\frac{2\pi}{8}jk\,|f(j)\rangle_3.$ • Define $\omega_k := e^{-i\frac{2\pi}{8}}$ $\frac{2\pi}{8}$ *k*. Then

$$
s_k = |a\rangle_3 (\omega_k^0 + \omega_k^2 + \omega_k^4 + \omega_k^6) + |b\rangle_3 (\omega_k^1 + \omega_k^3 + \omega_k^5 + \omega_k^7).
$$

\n
$$
\diamond s_0 = 4 |a\rangle_3 + 4 |b\rangle_3.
$$

\n
$$
\diamond s_4 = 4 |a\rangle_3 - 4 |b\rangle_3.
$$

\n
$$
\diamond
$$
 All other $s_k = 0.$

• In short, after the quantum Fourier transform, we see a redistribution of the weights, i.e.,

$$
|\Psi_2\rangle = \frac{1}{2} (|0\rangle_3 |a\rangle_3 + |0\rangle_3 |b\rangle_3 + |4\rangle_3 |a\rangle_3 - |4\rangle_3 |b\rangle_3).
$$

If we take the measurement, input registers $|0\rangle$ and $|4\rangle$ will show up with equal probability which is a consequence of $p = 2$.

• The cancelation observed here is more extensively exploited in Shor's factorization algorithm.

General Algorithm for $N = 2^n$

• Prepare the uniform superposition of all basic $|x\rangle$.

$$
|\Psi_0\rangle := \frac{1}{\sqrt{N}} \sum_{x \in \mathbb{Z}_N} |x\rangle.
$$

• Apply the oracle \mathbf{U}_f to obtain

$$
|\Psi_1\rangle := \frac{1}{\sqrt{N}} \sum_{x \in \mathbb{Z}_N} |x\rangle |f(x)\rangle.
$$

- Measure an output register and take record of the input register of the collapsed state.
- Apply QFT to the input register.
- Repeat enough times to create equations for estimating the period p.

Analysis I

- Denote the image set of f by \mathcal{O} .
	- \Diamond C contains exactly p elements.
	- \diamond For each $c \in \mathcal{O}$, define the indicator function $f_c : \mathbb{Z}_N \to$ ${0, 1}$ by

$$
f_c(x) = \begin{cases} 1 & \text{if } f(x) = c, \\ 0 & \text{otherwise.} \end{cases}
$$

• Rewrite $|\Psi_1\rangle$ as

$$
|\Psi_1\rangle \ = \ \sum_{c\in\mathcal{O}}\frac{1}{\sqrt{N}}\sum_{x\in\mathbb{Z}_N}(f_c(x)\,|x\rangle)\,|f(x)\rangle\,.
$$

 \diamond The probability of observing c is $\frac{1}{p}$ for every $c \in \mathcal{O}$. (Why?) \diamond At the observation $c,$ the system collapse to

$$
\begin{aligned}\n|\Phi\rangle &:= \sqrt{\frac{p}{N}} \sum_{x \in \mathbb{Z}_N} \left(f_c(x) \, |x\rangle \right) |c\rangle \\
&= \frac{1}{\sqrt{N}} \sum_{x \in \mathbb{Z}_N} \left(\sqrt{p} f_c(x) \, |x\rangle \right) |c\rangle \, .\n\end{aligned}
$$

• Which output register c is to be measured?

Periodic Spike Function

• Given $g : \mathbb{Z}_N \to \mathbb{C}$, suppose $\widetilde{g}(k) = g(k+T)$. Then

$$
\mathbf{U}_{QFT}(\widetilde{\mathbf{g}}) = \sum_{k=0}^{N-1} \widetilde{g}(k) \frac{1}{\sqrt{N}} \sum_{j=0}^{N-1} e^{-i\frac{2\pi}{N}jk} |j\rangle_n \n= \sum_{j=0}^{N-1} \left(\frac{1}{\sqrt{N}} \sum_{k=0}^{N-1} g(k+T) e^{-i\frac{2\pi}{N}jk} \right) |j\rangle \n= \sum_{j=0}^{N-1} \left(\frac{1}{\sqrt{N}} \sum_{y=0}^{N-1} g(y) e^{-i\frac{2\pi}{N}j(y-T)} \right) |j\rangle \n= \sum_{j=0}^{N-1} e^{i\frac{2\pi}{N}jT} \mathfrak{G}(j) |j\rangle.
$$

 \diamond The Fourier coefficients of g and \widetilde{g} have the same magnitude.

- Suffice to concentrate on one output register c .
- Without loss of generality, we take $c = f(0)$.
	- $\Diamond f_c(x) = 1$ only at the set $\mathcal{H} = \{0, p, 2p, 3p, \ldots\}.$ \diamond *H* has exactly $\frac{N}{p}$ elements.

Analysis II

- Define $\mathcal{D} := \{0, \frac{N}{p}\}$ $\frac{N}{p}, \frac{2N}{p}$ $\frac{N}{p},\ldots\} \subset \mathbb{Z}_N.$ $\Diamond \mathcal{D}$ has exactly p elements. (Why?)
- Apply the QFT to the input register of $|\Phi\rangle$.
	- \diamond The input register at observation c is

$$
\mathbf{g} := \frac{1}{\sqrt{N}} \sum_{x \in \mathbb{Z}_N} \sqrt{p} f_c(x) |x\rangle.
$$

⋄ Look for

$$
\mathbf{U}_{QFT}(\mathbf{g}) = \sum_{j=0}^{N-1} \mathfrak{G}(j) |j\rangle.
$$

 \Diamond By (5.10), the Fourier coefficients are given by

$$
\mathfrak{G}(j) := \frac{1}{\sqrt{N}} \sum_{k=0}^{N-1} \frac{1}{\sqrt{N}} \sqrt{p} f_c(k) e^{-i \frac{2\pi}{N} jk}.
$$

• Two cases:

$$
\diamond \text{ If } j \in \mathcal{D},
$$

$$
\mathfrak{G}(j) = \frac{1}{\sqrt{N}} \sum_{k \in \mathcal{H}} \frac{1}{\sqrt{N}} \sqrt{p} e^{-i\frac{2\pi}{N}jk} = \frac{\sqrt{p}}{N} \frac{N}{p} = \frac{1}{\sqrt{p}}.
$$

 \diamond If $j \notin \mathcal{D}$,

$$
\mathfrak{G}(j) = 0.
$$

\n
$$
\triangleright \text{Note that } \sum_{j \in \mathcal{D}} |\mathfrak{G}(j)|^2 = 1.
$$

\n
$$
\triangleright \text{No more probability for } j \notin \mathcal{D}.
$$

• So what to do with these results?

- We measure each $j \in \mathcal{D}$ with probability $\frac{1}{p}$ and others with probability 0.
- $j \in \mathcal{D}$ if and only if $jp = 0$ (mod N).
	- \diamond That is, we sample a uniformly random j, which are multiples of the ratio $\frac{N}{p}$, such that $jp = 0$ (mod N).
- This is similar to what has happened in Simon algorithm!
	- \diamond In the Simon algorithm, we sampled a uniformly random such that $z_i \perp p$ under the dot product of two n-qubit modulo 2.
	- \diamond Here, we consider multiplication modulo N.
- How to find the ratio $m = \frac{N}{p}$ $\frac{N}{p}$?
	- \diamond The algorithm samples a random integer multiple of m.
	- \diamond Suppose we have two random samples, which we can write am and bm.
	- \Diamond Note that $gcd(am; bm) = gcd(a; b)m$, if $gcd(a; b) = 1$, then m is found.
- If a and b are uniformly and independently sampled integers from \mathbb{Z}_N , what is the probability that $gcd(a; b) = 1?$

5.3 Shor Factorization

- Shors factorization algorithm is used to factor numbers into their components (which can potentially be prime).
- It is one of the most significant examples in which a quantum computer demonstrates enormous power surpassing its classical counterpart.
	- \diamond The algorithm does the factorization in roughly $O(n^3)$ quantum operations.
	- \diamond In contrast, the best known classical algorithms are exponential.
- Since the basis of most modern cryptography system is relying on the impossibility of exponential cost of factorization, being able to factor in polynomial time on a quantum computer has attracted significant interest.

Applications 133

- Given positive integers x and N, $x < N$, x is coprime to N, the order of x (mod N) is the least positive integer r such that $x^r \pmod{N} = 1$.
	- \Diamond Since x (mod N) can only take a finite number of different values, x must have a finite order, denoted by $ord_N(x)$.
	- \Diamond The order $ord_N(x)$ divides the order of $\mathbb{Z}/N\mathbb{Z}$.
- A basic idea of Shor's algorithm:
	- \Diamond Suppose p and q are prime number and $N = pq$.
	- \diamond Choose some random x which is co-prime of N
	- \diamond Use quantum parallelism to compute x^r for all r simultaneously. (This is only an easy brute force way. It could be done in a better way.)
	- \diamond Interfere all of the x^r 's to obtain knowledge about its period.
	- \diamond Use this period to find the factor p or q of N.

Order Finding ⇒ Factorization

- A quantum computation is needed to find the order r , which will be discussed later.
- If the order r of x is odd, choose another random x .
- \bullet Suppose an even order r is found. Write

$$
(x^{r/2} - 1)(x^{r/2} + 1) = x^r - 1 = 0 \text{ (mod } N).
$$

- \Diamond If $x^{r/2} + 1 = 0$ (mod N), then $\gcd(x^{r/2} 1, N) = 1$; choose a different x.
- \diamond If $x^{r/2} + 1 \neq 0$ (mod N), then

$$
d := \gcd(x^{r/2} - 1, N)
$$

must be either p or q .

- $\triangleright x^{r/2} 1$ cannot be a multiple of N; otherwise, $x^{r/2} =$ 1 (mod N), contradicting $ord_N(x) = r$. $\triangleright x^{r/2} - 1$ contains either p or q.
- No need to assume $N = pq$.
	- \diamond The number d gives us a nontrivial factor of N.
	- \diamond Factorize d and $\frac{N}{d}$ recursively and obtain all prime factors.
	- \diamond We can efficiently test primality. (How?)
- Suppose N has at least two distinct prime factors. If $x \in \mathbb{Z}/N\mathbb{Z}$ is selected randomly, then the probability that $ord_N(x)$ is even and is at least $\frac{1}{2}$.

• Choose *n* large enough such that $N^2 < Q := 2^n < 2N^2$. Define $f:\mathbb{Z}_Q\rightarrow \mathbb{Z}_N$ via

$$
f(z) := x^z \; (\text{mod } N).
$$

 \Diamond Finding $ord_N(x)$ is almost equivalent to finding the period of f .

$$
f(z+r) = f(z).
$$

- \diamond However, r does not necessarily divide Q . This is the main difference between order-finding and period finding.
- For a measurement of the output register c ,
	- \diamond It appears only D times where D is either $\lfloor \frac{Q}{r} \rfloor$ $rac{Q}{r}$ or $\lceil \frac{Q}{r} \rceil$ $\frac{Q}{r}$.
	- ⋄ The system collapse to

$$
|\Phi\rangle \; := \; \frac{1}{\sqrt{D}} \sum_{z \in \mathbb{Z}_Q} \left(f_c(z) \, | z \rangle \right) | c \rangle \, .
$$

 \diamond Replace the set D used in Analysis II by $D := \{0, D, 2D, \ldots\}.$ \diamond Apply the QFT to $|\Phi\rangle$ to obtain

$$
(\mathbf{U}_{QFT} \otimes I)(|\Phi\rangle) = \sum_{j=0}^{Q-1} \mathfrak{G}(j) |j\rangle |c\rangle.
$$

with the Fourier coefficients

$$
\mathfrak{G}(j) := \frac{1}{\sqrt{QD}} \sum_{k=0}^{Q-1} f_c(k) e^{-i \frac{2\pi}{Q} j k} = \frac{1}{\sqrt{QD}} \sum_{t=0}^{D-1} e^{-i \frac{2\pi}{Q} j t r}
$$

⊲ This is not as simple as that for the period-finding.

(This is to be completed later.)

5.4 Solving Linear Algebra Problems

- Eigenvalue Problem
- Quantum Phase Estimation
- \bullet System of Linear Equations

Eigenvalue Problem

• Given a unitary operator **that operates on** m **qubits with an** eigenvector $|\Psi\rangle$ such that

$$
\mathbf{U} |\Psi\rangle = e^{i2\pi\omega} |\Psi\rangle ,
$$

estimate ω .

 \diamond With high probability;

 \diamond Within additive error ϵ ;

- \diamond Using $O(\log \frac{1}{\epsilon})$ qubits;
- \diamond Using $O(\frac{1}{\epsilon})$ $\frac{1}{\epsilon}$) controlled-**U** operations.
- The following process U_{phase} that does the transformation

$$
\left|0\right>^n\left|\Psi\right>\rightarrow\left|\widetilde{\omega}\right>\left|\Psi\right>
$$

is called a quantum phase algorithm.

 ∞ $\tilde{\omega}$ is an estimate of ω with known error.

• Create superposition:

$$
|\Phi\rangle = (\mathbf{H}^{\otimes n} \otimes I)(|0\rangle^{\otimes n} |\Psi\rangle) = \frac{1}{\sqrt{2^n}}(|0\rangle + |1\rangle)^{\otimes n} |\Psi\rangle.
$$

• Apply controlled- \mathbf{U}^{2^j} gates, $j = 0, 1, \ldots, n-1$, sequentially according to the circuit:

 \diamond First, apply the controlled- U^{2^0} :

$$
\begin{aligned}\n|\Psi\rangle \stackrel{c\mathbf{U}^{2^0}}{\Rightarrow} \frac{1}{\sqrt{2^n}}(|0\rangle + |1\rangle)^{\otimes (n-1)} \otimes (|0\rangle |\Psi\rangle + |1\rangle \mathbf{U}^{2^0} |\Psi\rangle \\
&= \left(\frac{1}{\sqrt{2^n}}(|0\rangle + |1\rangle)^{\otimes (n-1)} \otimes (|0\rangle + e^{i2\pi 2^0 \omega} |1\rangle)\right) \otimes |\Psi\rangle .\n\end{aligned}
$$

 \diamond Followed by the controlled- U^{2^1} :

$$
\stackrel{c\underline{U}^{2^1}}{\longrightarrow} \frac{1}{\sqrt{2^n}}(|0\rangle + |1\rangle)^{\otimes (n-3)} \otimes (|0\rangle + e^{i2\pi 2^1\omega} |1\rangle) \otimes (|0\rangle + e^{i2\pi 2^0\omega} |1\rangle) \otimes |\Psi\rangle.
$$

 \diamond At the end, receive the identity for the input register:

$$
\bigotimes_{j=1}^{n} \frac{1}{\sqrt{2}}(|0\rangle + e^{i2\pi\omega 2^{n-j}}|1\rangle) = \frac{1}{\sqrt{2^n}} \sum_{k=0}^{2^n - 1} e^{i2\pi\omega k} |k\rangle_n. (5.12)
$$

 \triangleright Prove the identity!

- \triangleright Same problem, but without the knowledge of $|\Psi\rangle$.
- \triangleright Estimate ω .

Quantum Phase Estimation

• Problem: Given a state

$$
|\Phi\rangle := \frac{1}{\sqrt{2^n}} \sum_{k=0}^{2^n - 1} e^{i2\pi\omega k} |k\rangle_n, \qquad (5.13)
$$

obtain a good estimate of the phase parameter ω .

- Some preliminary facts:
	- \diamond Because $0 < \omega < 1$ can express

$$
\omega = (d_1 d_2 d_3 \ldots)_2 = \frac{d_1}{2} + \frac{d_2}{2^2} + \ldots
$$

 \diamond Then

$$
e^{i2\pi(2^k\omega)} = e^{i2\pi(d_1d_2d_3...d_k.d_{k+1}d_{k+2}...)_2}
$$

=
$$
e^{i2\pi(0.d_{k+1}d_{k+2}...)_2}
$$

 \diamond Therefore, can rewrite $|\Phi\rangle$ as

$$
|\Phi\rangle = \bigotimes_{j=1}^{n} \frac{1}{\sqrt{2}} (|0\rangle + e^{i2\pi (d_{n-j+1}d_{n-j+2}...)2} |1\rangle).
$$

An Example

- Consider the case $n = 2$ and $\omega = (d_1 d_2)_2$.
- By (5.12) ,

$$
|\Phi\rangle = \left(\frac{|0\rangle + e^{i2\pi (d_2)_2} |1\rangle}{\sqrt{2}}\right) \otimes \left(\frac{|0\rangle + e^{i2\pi (d_1 d_2)_2} |1\rangle}{\sqrt{2}}\right).
$$

- \bullet Applying ${\bf H}$ to the first qubit, we see that $\mathbf{H}(\frac{|0\rangle+e^{\imath2\pi(d_2)_{2}}|1\rangle}{\sqrt{2}}$ √ 2) $=\frac{|0\rangle + |1\rangle}{2}$ 2 $+\frac{|0\rangle-|1\rangle}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $(-1)^{d_2} = |d_2\rangle$.
- To determine d_1 ,
	- \Diamond If $d_2 = 0$, obtain d_1 by applying **H** to the second qubit.
	- \Diamond If $d_2=1$,

.

 \triangleright Define the 1-qubit phase rotation operator \mathcal{R}_2

$$
\mathcal{R}_2 := \begin{bmatrix} 1 & 0 \\ 0 & e^{\frac{i2\pi}{2^2}} \end{bmatrix} . \tag{5.14}
$$

⊲ Observe

$$
\mathcal{R}_2^{-1}(\frac{|0\rangle + e^{i2\pi(d_1 1)_2} |1\rangle}{\sqrt{2}}) = \frac{|0\rangle + e^{i2\pi(d_1 1)_2} |1\rangle}{\sqrt{2}}.
$$

 \diamond This is a controlled- \mathcal{R}_2^{-1} gate.

• The phase can be recovered exactly from the circuit:

$$
\frac{|0\rangle + e^{i2\pi (d_2)}|1\rangle}{\sqrt{2}} \frac{|0\rangle + e^{i2\pi (d_1d_2)}|1\rangle}{\sqrt{2}} \frac{|1\rangle}{\sqrt{2}} \frac{|d_2\rangle}{\sqrt{2}}
$$

Applications 143

.

Generalization

- Consider the case $n = 3$ and $\omega = (d_1d_2d_3)_2$.
- By (5.12) ,

$$
|\Psi\rangle = (\frac{|0\rangle + e^{i2\pi (.d_3)_2} |1\rangle}{\sqrt{2}}) \otimes (\frac{|0\rangle + e^{i2\pi (.d_2d_3)_2} |1\rangle}{\sqrt{2}}) \otimes (\frac{|0\rangle + e^{i2\pi (.d_1d_2d_3)_2} |1\rangle}{\sqrt{2}}).
$$

• Define the phase rotation operator \mathcal{R}_k by

$$
\mathcal{R}_k := \begin{bmatrix} 1 & 0 \\ 0 & e^{i\frac{2\pi}{2^k}} \end{bmatrix} . \tag{5.15}
$$

• Build the circuit as

• Note that the above operations does the inverse of QFT.

$$
\frac{1}{\sqrt{2^3}} \sum_{k=0}^{2^3-1} e^{i2\pi (d_1d_2d_3)2^k} |k\rangle_n \to |d_1d_2d_3\rangle.
$$

Inverse QFT

• Recall the linear relationships $\mathbf{F} = W\mathbf{f}$ in the DFT and $\mathbf{f} =$ W^* **F** in the IDFT.

 \diamond Is there a similar inverse relationship to the QFT (5.9)?

• In the above construction, ω is of the form $\frac{x}{2^n}$ where x is an n -qubit, i.e., \mathbf{a}

$$
\frac{1}{\sqrt{2^n}} \sum_{k=0}^{2^n-1} e^{i\frac{2\pi}{2^n}x^k} |k\rangle_n \to |x\rangle.
$$
 (5.16)

- \diamond By applying the circuit in reverse order whereas every gate is replaced by its inverse, we have a circuit for the QFT.
- \diamond Show that the transformation (5.16) can be expressed as the map

$$
\mathbf{U}_{QFT} |j\rangle_n := \frac{1}{\sqrt{2^n}} \sum_{k=0}^{2^n - 1} e^{-i\frac{2\pi}{2^n}jk} |k\rangle_n.
$$
 (5.17)

• What if ω is not of the form $\frac{x}{2^n}$, say, what if ω is irrational?

Quantum Phase Algorithm

• Applying the QFT to the right side of (5.12) yields

$$
\mathbf{U}_{QTF} | \Phi \rangle = \frac{1}{\sqrt{2^n}} \sum_{k=0}^{2^n - 1} e^{i2\pi \omega k} \mathbf{U}_{QFT} | k \rangle_n
$$

=
$$
\frac{1}{\sqrt{2^n}} \sum_{k=0}^{2^n - 1} e^{i2\pi \omega k} \frac{1}{\sqrt{2^n}} \sum_{j=0}^{2^n - 1} e^{-i\frac{2\pi}{2^n}jk} | j \rangle_n
$$

=
$$
\frac{1}{2^n} \sum_{j=0}^{2^n - 1} \left(\sum_{k=0}^{2^n - 1} e^{i2\pi \frac{k}{2^n} (2^n \omega - j)} \right) | j \rangle_n
$$

- Approximate the value of $\omega \in [0, 1]$ as follows:
	- \diamond Round $2^n\omega$ to the nearest integer, say,

$$
2^n \omega = a + 2^n \delta,
$$

with $0 \leq \delta \leq \frac{1}{2^{n-1}}$ $\frac{1}{2^{n+1}}$.

 \diamond The final state appears in the form

$$
\frac{1}{2^n} \sum_{x=0}^{2^n-1} \sum_{k=0}^{2^n-1} e^{-i2\pi \frac{k}{2^n}(x-a)} e^{i2\pi \delta k} |x\rangle \otimes |\Psi\rangle.
$$

 \diamond Make a measurement. The probability of yielding $x = a$ is given by

$$
Pr(x = a) = \frac{1}{2^{2n}} \left| \sum_{k=0}^{2^{n}-1} e^{i2\pi\delta k} \right|^2 = \begin{cases} 1, & \text{if } \delta = 0, \\ \frac{1}{2^{2n}} \left| \frac{1 - e^{i2\pi 2^{n} \delta}}{1 - e^{i2\pi \delta}} \right|^2, & \text{if } \delta \neq 0. \end{cases}
$$

 \triangleright Can prove that for $\delta \neq 0$, $Pr(a) \geq \frac{4}{\pi^2}$ $\frac{4}{\pi^2} \approx 0.40.$

System of Linear Equations

- Solving linear systems is fundamental in virtually all areas of science and engineering. A quantum algorithm for linear systems of equations has the potential for widespread applicability.
- Thus far, the quantum algorithm can only work for Hermitian matrices, preferably large and sparse.
- Can provide only a scalar measurement on the solution vector. Not the values of the solution vector itself.
	- \diamond What to expect from a quantum machine when trying to determine the intersection of two lines? Can quantum computing determine the geometry?

Quantum Linear System Problem

• Given an $N \times N$ Hermitian matrix A, a unit vector **b**, and an operator M , find the value

$$
\bra{\mathbf{x}}M\ket{\mathbf{x}}
$$

where \bf{x} is a solution to the system

$$
A\left|\mathbf{x}\right\rangle =\left|\mathbf{b}\right\rangle .
$$

- It has been declared that the quantum algorithm has an exponential speedup, $O(\log_2 N)$, as opposed to $O(N^3)$ of the classical Gaussian elimination method. However, we must clarify some assumptions:
	- \Diamond To merely read in the entries of the vector $|b\rangle$ will cost $O(N)$. So $|b\rangle$ is assumed to be already prepared by some other means.
	- \diamond As a state, $|{\bf b}\rangle$ must be normalized.
	- \Diamond If we have a means to measure one component of $|\mathbf{x}\rangle$, the system collapses. If we want to measure all components, we must repeat the algorithm N times. This is exponentially more than $O(\log_2 N)$.
	- \diamond The algorithm is suitable only for the class of quantum linear system problems (QLSP).

Basic Steps

- If A is Hermitian, then $U := e^{iAt}$ is unitary.
	- \diamond The eigenvalues λ_j of A must be real.
	- \diamond The eigenvalues of A are precisely the phases of U.
	- \Diamond A and U have the same set of eigenvectors $|\Psi_j\rangle$.
- Apply the phase estimation gate U_{phase} to Ψ_j , we have an estimate λ_j of λ_j .

$$
\left|0\right>^{n} \left|\Psi_{j}\right> \rightarrow \left|\widetilde{\lambda}_{j}\right>\left|\Psi_{j}\right>
$$

without knowing $|\Psi_j\rangle$.

• Expand $|{\bf b}\rangle$ in terms of the basis of eigenvectors,

$$
|\mathbf{b}\rangle = \sum_{j=1}^N \beta_j | \Psi_j \rangle.
$$

 \diamond Via \mathbf{U}_{phase} , we obtain the transformation

$$
|\mathbf{b}\rangle \rightarrow \sum_{j=1}^N \beta_j \left| \widetilde{\lambda}_j \right\rangle |\Psi_j\rangle.
$$

• Add a third register (ancilla) to make a controlled rotation $e^{i\theta Y}$ conditioned upon $\begin{array}{c} \begin{array}{c} \end{array} \end{array}$ $\overline{}$ λ_j \setminus to obtain

$$
\left|\widetilde{\lambda}_j\right\rangle\left|\Psi_j\right\rangle \rightarrow \left|\widetilde{\lambda}_j\right\rangle\left|\Psi_j\right\rangle(\sqrt{1-(\frac{\gamma_j}{\widetilde{\lambda}_j})^2}\left|0\right\rangle + \frac{\gamma_j}{\widetilde{\lambda}_j}\left|1\right\rangle).
$$

 \diamond The control is per j and, hence, this is parallelism. $\diamond \gamma_j$ is for normalization.

Applications 149

• Together, the state is now

$$
\sum_{j=1}^N \beta_j \left| \widetilde{\lambda}_j \right\rangle |\Psi_j\rangle \left(\sqrt{1 - \left(\frac{\gamma_j}{\widetilde{\lambda}_j} \right)^2} |0\rangle + \frac{\gamma_j}{\widetilde{\lambda}_j} |1\rangle \right).
$$

• Undo (reverse) the phase estimation to obtain

$$
|0\rangle^{\otimes n} \otimes \sum_{j=1}^N \beta_j \left| \Psi_j \right\rangle \left(\sqrt{1 - \left(\frac{\gamma_j}{\widetilde{\lambda}_j}\right)^2} \left| 0 \right\rangle + \frac{\gamma_j}{\widetilde{\lambda}_j} \left| 1 \right\rangle \right).
$$

• Employ an amplifying operator to enlarge the magnitude of $|1\rangle$. The second term is proportional to

$$
A^{-1} | \mathbf{b} \rangle = \sum_{j=1}^{N} \beta_j \frac{1}{\lambda_j} | \Psi_j \rangle.
$$

- ⋄ The whole process is nothing but an analogue of the linear algebra.
	- \triangleright If $A = Q \Lambda Q^*$, then

$$
A^{-1} = Q\Lambda^{-1}Q^*.
$$

⊲ Therefore,

$$
\mathbf{x} = Q\Lambda^{-1} \underbrace{Q^* \mathbf{b}}_{\beta_1, \dots, \beta_n}.
$$

- Note that only a quantum description of the solution vector is output from HHL.
	- \diamond For applications that need a full classical description of x , this may not be satisfactory.

5.5 Differential Equations

- Classical ODE Methods
- \bullet Quantum Formulations

Classical ODE Methods

- Differential equations are ubiquitous in science and engineer-
ing. Solving differential equations with high precision is of Solving differential equations with high precision is of paramount importance.
- Both the theory and techniques of numerical ODE methods have reached the state-of-the-art in digital computation.
	- \Diamond Can be programmed to automatically adapt optimal step sizes and orders along the integration.
	- ⋄ Efficient for fast integration and effective for meeting error tolerance.
- Two main basic notions:
	- ⋄ Nonlinear one-step methods.
		- ⊲ Self-sufficient.
		- ⊲ Can be used for help generate starting values.
		- ⊲ More expensive.
	- \diamond Linear multi-step methods.
		- ⊲ Require starting values.
		- ⊲ Much cheaper with higher order precision.
- The simplest numerical method,
	- \Diamond If $y(x)$ is a solution, then

$$
y(x_n + h) = y(x_n) + hy'(x_n) + O(h^2)
$$

is the Taylor series expansion of $y(x_n + h)$ near x_n .

 \Diamond Suppose the *accepted* solution at x_n is given $y(x_n) \approx y_n$, then the truncated Taylor series suggests a scheme:

$$
y_{n+1} = y_n + h f(x_n, y_n)
$$
 (5.18)

should be a reasonable approximation.

- Questions always asked in numerical ODE:
	- \diamond What is the magnitude of the global error

$$
e_n := y_n - y(x_n)
$$

at the n-th step?

- \Diamond (Stability) How does the error propagate?
- \Diamond (Precision) How does the step size h affect the accuracy?
- \diamond How to control the step size and error growth to get the best possible accuracy?
- Consider a 2-stage scheme:
	- \diamond Take one half-step Euler shooting:

$$
y_{n+\frac{1}{2}} := y_n + \frac{h}{2}f(x_n, y_n).
$$

 \diamond Use the midpoint, instead of the endpoint, to estimate the slop:

$$
f_{n+\frac{1}{2}} := f\left(x_{n+\frac{1}{2}}, y_{n+\frac{1}{2}}\right)
$$

.

 \diamond Take one full Euler shooting:

$$
y_{n+1} = y_n + h f\left(x_n + \frac{h}{2}, \mathbf{y_n} + \frac{h}{2} \mathbf{f}(\mathbf{x_n}, \mathbf{y_n})\right).
$$

- Note that there are two function evaluations involved.
	- ⋄ This is a smart way to implement the Taylor's series expansion.
	- \diamond Can match up the terms up to $O(h^3)$.
	- ⋄ The method has one-order better precision than the Euler method.

Runge-Kutta Methods

 \bullet A general R -stage Runge-Kutta method is defined by the onestep method:

$$
y_{n+1} = y_n + h\phi(x_n, y_n, h)
$$
 (5.19)

where

$$
\phi(x_n, y_n, h) = \sum_{r=1}^{R} c_r k_r
$$
\n
$$
\sum_{r=1}^{R} c_r = 1
$$
\n
$$
k_r = f(x_n + a_r h, y_n + h \sum_{s=1}^{R} b_{rs} k_s)
$$
\n(5.21)\n
$$
\sum_{s=1}^{R} b_{rs} = a_r.
$$
\n(5.22)

 \bullet It is convenient to characterize the scheme in the $Butcher$ $array:$

$$
\begin{array}{c|cccc}\na_1 & b_{11} & b_{12} & \dots & b_{1R} \\
a_2 & b_{21} & b_{22} & \dots & b_{2R} \\
\vdots & \vdots & & \vdots \\
a_R & b_{R1} & b_{R2} & \dots & b_{RR} \\
\hline\nc_1 & c_2 & \dots & c_R\n\end{array}
$$

• Lots of research has been done in the past few decades to find out the best combinations of these coefficients.

Some Popular RK Schemes

 \bullet Two fourth-order 4-stage explicit Runge-Kutta methods

$$
\begin{array}{c|cccc}\n0 & 0 & & & & \\
1/2 & 1/2 & 0 & & & & \\
1/2 & 0 & 1/2 & 0 & & & \\
\hline\n1 & 0 & 0 & 1 & 0 & & \\
\hline\n1/6 & 2/6 & 2/6 & 1/6 & & & \\
0 & 0 & & & & \\
1/3 & 1/3 & 0 & & & \\
2/3 & -1/3 & 1 & 0 & & \\
1 & 1 & -1 & 1 & 0 & & \\
\hline\n1/8 & 3/8 & 3/8 & 1/8 & & \\
\end{array}
$$

• The unique 2-stage implicit Runge-Kutta method of order 4:

$$
\begin{array}{c|c|c}\n1/2 + \sqrt{3}/6 & 1/4 & 1/4 + \sqrt{3}/6 \\
\hline\n1/2 - \sqrt{3}/6 & 1/4 - \sqrt{3}/6 & 1/4 \\
\hline\n1/2 & 1/2 & 1/2\n\end{array}
$$

• A 3-stage semi-explicit Runge-kutta method or order 4:

$$
\begin{array}{c|cc}\n0 & 0 & 0 & 0 \\
1/2 & 1/4 & 1/4 & 0 \\
\hline\n1 & 0 & 1 & 0 \\
\hline\n1/6 & 4/6 & 1/6\n\end{array}
$$

Linear Multi-step Methods

• A *linear* $(p+1)$ -step method of step size h is a numerical scheme of the form

$$
y_{n+1} = \sum_{i=0}^{p} a_i y_{n-i} + h \sum_{i=-1}^{p} b_i f_{n-i}
$$
 (5.22)

where $x_k = x_0 + kh$, $f_{n-i} := f(x_{n-i}, y_{n-i})$, and $a_p^2 + b_p^2$ $_{p}^{2}\neq 0.$

- \diamond Note that the information used involves past values the approximate solution y_i and its first order derivative f_i .
- \Diamond If $b_{-1} = 0$, then the method is said to be explicit; otherwise, it is implicit.
	- \triangleright In order to obtain y_{n+1} from an implicit method, usually it is necessary to solve a nonlinear equation.
	- ⊲ Implicit methods are more expensive.
	- ⊲ Implicit methods has better stability.
- The Adams family:

$$
y_{n+1} = y_n + \sum_{i=-1}^{p} \beta_{pi} f_{n-i}
$$
 (5.23)

⋄ Obtained from the Fundamental Theorem of Calculus

$$
y(x_{n+1}) - y(x_n) = \int_{x_n}^{x_{n+1}} f(x, y(x)) dx.
$$

 \Diamond The unknown $f(x, y(x))$ is approximated by polynomial interpolation.

Some Popular Multi-step Schemes

• Some Adams-Bashforth methods:

• Some Adams-Moulton methods:

Quantum Formulation

- A quantum algorithm for general nonlinear differential equations might be too ambitious.
	- \diamond The complexity of the simulation scaled exponentially in the number of time-steps.
	- \diamond The quantum nonlinear Schrödinger equation is nonlinear in the field operators, but it is still linear in the quantum state.
	- ⋄ Most operators act linearly on quantum superpositions.
- A more natural application for quantum computers is linear differential equations:

$$
\frac{d\mathbf{y}}{dt} = A(t)\mathbf{y} + \mathbf{b}(t); \quad \mathbf{y}(t_0) = \mathbf{y}_0 \in \mathbb{C}^N.
$$
 (5.24)

• Do we really have to solve an ODE by quantum algorithms?

- \diamond The complexity of solving the differential equation in the classical algorithm must be at least linear in N.
- \Diamond One goal of the quantum algorithm is to solve the differential
equation in time $O(\text{poly}(\log N))$. (Is this really equation in time $O(\text{poly}(\log N))$. important?)
- ⋄ Another goal is to provide efficient scaling in the evolution in time T.
- ⋄ Can the numerical analysis community accept quantum al-(In terms of precision and stability)

Feynman Clock

- If a quantum system moves stepwise forward and then backward in time in equal increments, it would necessarily return to its original state.
- Traditional algorithms utilize parallelization in space.
	- \diamond A supercomputer comprising many processors spatially distributes and advances the problem in single temporal increments.
- On a quantum machine, think about the possibility of setting up a calculation that is parallel in time.
	- \Diamond Different points in time has to be *simultaneously* calculated on many processors.

.

Key Idea

- Assume $t_j = t_0 + jh$, $\mathbf{y}_k \approx \mathbf{y}(t_j)$, and a total of N_t steps are taken over $[t_0, T]$ (so $N_t = \frac{T-t_0}{N_t}$ $\frac{-t_0}{N_t}$.
- Wish to obtain the final state in the form

$$
|\psi\rangle = \sum_{j=0}^{N_t} |t_j\rangle |\mathbf{y}_j\rangle.
$$
 (5.25)

- ⋄ Temporarily ignore the normalization.
- \diamond By measuring the time register, we get the approximation y_j .
- \diamond The probability of obtaining the final time is small $\frac{1}{N_t+1}$. (How to boost the probability?)
- Try the Euler's method:

$$
\mathbf{y}_{n+1} = \mathbf{y}_n + h(A(t_n)\mathbf{y}_n + \mathbf{b}_n).
$$

• Code the solution at y_2 via

$$
\begin{bmatrix}\nI & 0 & 0 & 0 & 0 \\
-(I + A(t_0)h) & I & 0 & 0 & 0 \\
0 & -(I + A(t_1)h) & I & 0 & 0 \\
0 & 0 & -I & I & 0 \\
0 & 0 & 0 & -I & I\n\end{bmatrix}\n\begin{bmatrix}\n\mathbf{y}_0 \\
\mathbf{y}_1 \\
\mathbf{y}_2 \\
\mathbf{y}_3 \\
\mathbf{y}_4\n\end{bmatrix} = \begin{bmatrix}\n\mathbf{y}_0 \\
\mathbf{b(t_0)}h \\
\mathbf{b(t_1)}h \\
0 \\
0\n\end{bmatrix}
$$

- \diamond Note that $y_3 = y_4 = y_2$ artificially. Therefore, the probability of getting y_2 is boosted from $\frac{1}{3}$ to $\frac{3}{5}$.
- ⋄ This linear system is to be solved via the HHL algorithm.
- Is this a good idea? (All because of the uncertainty in quantum computing.)
- To achieve high precision, N_t has to be extremely large.
- To know the intermediate solutions, lots of measurements need be made.
- How to deal with stability? The error will grow.