Preface

Quantum computing and quantum information science are emerging disciplines in which the principles of quantum physics are employed to store and process information. Quantum technologies are pushing forward the frontiers of the future. At the time when quantum computation is fully developed, many salient applications will stand to benefit from this fast, concurrent, and secure information processing ability — we will be able to handle some of the most pressing problems the world faces as well as leap to discoveries not yet known. As such, students should be curious and find it both beneficial and of vital importance that they are exposed to this subject as early as possible. A solid grasp and holistic treatment of this subject will require disciplines across multiple academic fields, which is hard to come by. This course intends to serve as a stepping stone by introducing this subject from the mathematical perspective. Mathematical and computational foundations useful for deciphering the rich structure within a quantum system and the quantum computation will be discussed.

This course is developed with the aim at exposing students via the mathematical vista how the quantum computation can be understood and formulated. Its goal is to build basic, and somewhat in-depth, mathematical knowledge needed for more advanced quantum computation.

I shall assume that students are familiar with linear algebra, e.g., inner product spaces, unitary transformations, and so on. Some familiarity with basic logic gates for Boolean functions, e.g., AND, XOR, and truth table, will be useful.

The notes are prepared in the form of itemized list, which highlights the basic but important concepts. More meat will be put on the bones during the class hours. I code some texts with colors for the following purposes:

- 1. Blue color means a suggested problem that readers are encouraged to work out the details.
- 2. Red color means some additional thoughts that readers are encouraged to ponder and perhaps some deeper investigations.