Chapter 1 Preliminaries

The purpose of this chapter is to provide some basic background information.

- Linear Space
- Hilbert Space
- Basic Principles

Linear Space

The notion of linear space provides simple, intuitive, and geometric interpretations on many complex mathematical entities.

- A linear space is an algebraic entity where every of its elements can be expressed algebraically as a linear combination of other elements.
 - ♦ The simplest linear space is a vector space.
 - ◊ A linear space can also be considered as a "flat" geometric entity in the sense of a "hyperplane" in the ambient space.
- If a linear space is equipped with a notion of sizes, called "norm", of its elements, then
 - \diamond We may measure the "distance" between any two elements.
 - $\diamond\,$ We may introduce the idea of "convergence".
 - \diamond Whether the limit points belong to a linear space is quite a significant issue.
- If a linear space is equipped with a notion of "inner product", then
 - \diamond The inner product can be used to induce a norm.
 - ♦ The inner product can be used to determine whether two elements in the linear space are "perpendicular" or not.
 - ♦ The notion of "projection" is critically important in applications.

Vector Space

- A vector space V over a field \mathbb{F} is a set of elements called vectors together with two operations,
 - (1)
 - $\begin{aligned} +: & V \times V \to V \qquad \text{via } (\mathbf{x}, \mathbf{y}) \rightarrowtail \mathbf{x} + \mathbf{y}, \\ & \therefore & \mathbb{F} \times V \to V \qquad \text{via } (\alpha, \mathbf{x}) \rightarrowtail \alpha \mathbf{x}, \end{aligned}$ (2)

that satisfy the following properties:

- 1. $\mathbf{x} + \mathbf{y} = \mathbf{y} + \mathbf{x}$.
- 2. $(\mathbf{x} + \mathbf{y}) + \mathbf{z} = \mathbf{x} + (\mathbf{y} + \mathbf{x}).$
- 3. There is a null vector $\mathbf{0} \in V$ such that $\mathbf{x} + \mathbf{0} = \mathbf{x}$ for all $\mathbf{x} \in V$.
- 4. $\alpha(\mathbf{x} + y) = \alpha \mathbf{x} + \alpha y$.
- 5. $(\alpha + \beta)\mathbf{x} = \alpha \mathbf{x} + \beta \mathbf{x}.$
- 6. $(\alpha\beta)\mathbf{x} = \alpha(\beta\mathbf{x}).$
- 7. 0x = 0, 1x = x.
- A nonempty subset S of a vector space V is called a *subspace* of V if every vector of the form $\alpha \mathbf{x} + \beta \mathbf{y} \in S$ whenever $\mathbf{x}, \mathbf{y} \in S$.

- Some examples:
 - $\diamond~{\rm The~set}$

$$\mathcal{P}_n := \{a_n x^n + \ldots + a_1 x + a_0 | a_n \in \mathbb{R}\}$$

of all polynomials over \mathbb{R} with degree less than or equal to n is a vector space.

 $\diamond~{\rm The~set}$

$$\mathcal{C}^1(a,b) := \{ f : (a,b) \to \mathbb{R} | f' \text{ is continuous over } (a,b) \}$$

of continuously differentiable functions is a vector space.

 $\diamond~{\rm The~set}$

$$\mathcal{T}_n := \{T \in \mathbb{R}^{n \times n} | t_{ij} = r_{|i-j|+1}, \text{ where } r_1, \dots, r_n \in \mathbb{R} \text{ arbitrary} \}$$

of n-dimensional Toeplitz matrices is a vector space.

 $\diamond~{\rm The~set}$

$$\mathcal{L}_p[a,b] := \{ f : [a,b] \to \mathbb{C} | \int_a^b |f(x)|^p dx < \infty \}$$

- of \mathcal{L}_p integrable functions is a vector space.
- $\diamond~{\rm The~set}$

$$c_0 := \{\{\xi_k\}_{k=1}^{\infty} | \lim_{k \to \infty} \xi_k = 0\}$$

is a vector space.

More Definitions

• A set V is called a *linear variety* of a subspace M if

$$V = \mathbf{x}_0 + M = \{\mathbf{x}_0 + \mathbf{m} | \mathbf{m} \in M\}.$$

• A set C is said to be a *cone with vertex at the origin* if

$$\alpha \mathbf{x} \in C$$
, whenever $\mathbf{x} \in C$ and $\alpha > 0$.

- $\diamond\,$ The set of all nonnegative matrices is a cone.
- $\diamond\,$ The set of all nonnegative continuous functions is a convex cone.
- A vector \mathbf{x} is said to be *linearly independent* of a set S is \mathbf{x} cannot be written as a linear combination of vectors from S.
 - \diamond The vectors $\mathbf{x}_1, \ldots, \mathbf{x}_n$ are mutually linearly independent if and only if

$$\sum_{i=1}^{n} \alpha_i \mathbf{x}_i = 0 \Longrightarrow \alpha_i = 0, \quad i = 1, \dots, n.$$

- ♦ If $\mathbf{x}_1, \ldots, \mathbf{x}_n$ are linearly independent, and $\sum_{i=1}^n \alpha_i \mathbf{x}_i = \sum_{i=1}^n \beta_i \mathbf{x}_i$, then $\alpha_i = \beta_i$ for all $i = 1, \ldots, n$.
- A finite set $\{\mathbf{x}_1, \ldots, \mathbf{x}_n\}$ of linearly independent vectors is said to be a *basis* of the space V if and only if

$$V = \operatorname{span}\{\mathbf{x}_1, \dots, \mathbf{x}_n\} := \{\sum_{i=1}^n \alpha_i \mathbf{x}_i | \alpha_i \in \mathbb{F}\}.$$

Convexity

• A set K is said to be *convex* if

$$\alpha \mathbf{x} + (1 - \alpha) \mathbf{y} \in K$$
, whenever $\mathbf{x}, \mathbf{y} \in K$ and $0 \le \alpha \le 1$.

- $\diamond\,$ The sum of two convex sets is convex.
- $\diamond\,$ The intersection of convex sets is convex.
- Given a set S, the convex hull of S, denoted by co(S), is defined to be the smallest convex set containing S.
 - \diamond Prove that co(S) is the collection of all convex combinations from S, i.e.,

$$co(S) = \{\sum_{i=1}^{n} \alpha_i \mathbf{x}_n | \mathbf{x}_i \in S, \alpha_i \ge 0, \sum_{i=1}^{n} \alpha_i = 1, \text{ and } n \text{ is arbitrary but finite} \}.$$

- \diamond What is the convex hull of all *n*-dimensional orthogonal matrices?
- ♦ What is the convex hull of all n-dimensional doubly stochastic matrices? (Birkhoff's theorem)
- A real-valued function $\phi: V \to \mathbb{R}$ is said to be a *convex function* if

$$\phi(\lambda \mathbf{x} + (1 - \lambda)\mathbf{y}) \le \lambda \phi(\mathbf{x}) + (1 - \lambda)\mathbf{y}$$

for each $\mathbf{x}, \mathbf{y} \in V$ and $0 \leq \lambda \leq 1$.

Normed Vector Space

• A vector space V is said to be a *normed space* if there is a map

 $\|\cdot\|:V\to\mathbb{R}$

such that

- 1. $\|\mathbf{x}\| > 0$ if $\mathbf{x} \neq \mathbf{0}$.
- 2. $\|\mathbf{x} + \mathbf{y}\| \le \|\mathbf{x}\| + \|\mathbf{y}\|$ for all \mathbf{x} and \mathbf{y} in V.
- 3. $\|\alpha \mathbf{x}\| = |\alpha| \|\mathbf{x}\|$ for all $\mathbf{x} \in V$ and $\alpha \in \mathbb{F}$.
- Some examples:

 \diamond Over \mathbb{R}^n , the function

$$\|\mathbf{x}\|_p := \left(\sum_{i=1}^n |x_i|^p\right)^{1/p}$$

is a norm, if $p \ge 1$.

- ▷ Identify the unit balls of ℝⁿ under different vector norms.
 Note that unit balls are necessarily convex.
- \triangleright How does the notion of unit balls affects approximations?

 \diamond Over $\mathbb{R}^{n \times n}$, the function

$$\|M\|_p := \sup_{\mathbf{x}\neq\mathbf{0}} \frac{\|M\mathbf{x}\|_p}{\|\mathbf{x}\|_p}$$

is called an induced (matrix) norm.

- ▷ What is the geometric meaning of an induced matrix norm?
- ▷ What is the analog of the SVD if other norms are used in the variation formulation? Any usage?
- ▷ Why is the usual Frobenius norm of a matrix not an induced norm?
- \diamond Over $C^1[a, b]$, the function

$$||f|| := \max_{a \le x \le b} |f(x)| + \max_{a \le x \le b} |f'(x)|$$

is a norm. (Note that the maximum exists over the closed interval [a, b].)

 \diamond Define the *total variation* of a function f over [a, b] by

$$T_a^b(f) := \sup_{a=x_0 < \dots < x_n = b} \sum_{i=1}^n |f(x_i) - f(x_{i-1})|$$

▷ If $T_a^b(f) < \infty$, we say that f is of bounded variation. ▷ The set

$$BV[a,b] := \{f : [a,b] \to \mathbb{R} | T_a^b(f) < \infty\}$$

is a normed vector space with the norm defined by

$$||f|| := f(a) + T_a^b(f).$$

▷ Give an example of a continuous function which is not of bounded variation.

Convergence and Completeness

• A sequence of vector $\{\mathbf{x}_n\}$ in a normed vector space V is said to *converge* to a vector \mathbf{x} , denoted by $\mathbf{x}_n \to \mathbf{x}$ if

$$\|\mathbf{x}_n - \mathbf{x}\| \to 0 \text{ as } n \to \infty.$$

 $\diamond\,$ If a sequence converges, then its limit is unique.

- A sequence $\{\mathbf{x}_n\}$ in a normed vector space V is said to be a *Cauchy sequence* if to every $\epsilon > 0$, there exists and integer N such that $\|\mathbf{x}_n \mathbf{x}_m\| < \epsilon$ whenever m, n > N.
 - ♦ Every convergent sequence is a Cauchy sequence.
 - ♦ A Cauchy sequence may not be convergent. (Give an example!)
- A space V in which every Cauchy sequence converges to a limit in V is said to be *complete*.
 - ♦ A complete normed vector space is called a *Banach space*.

- Some examples:
 - \diamond The space C[a, b] with the norm

$$||f|| := \int_a^b |f(x)| dx$$

is incomplete.

 \triangleright The sequence

$$f_n(x) := \begin{cases} 0, & \text{for } 0 \le x \le \frac{1}{2} - \frac{1}{n}, \\ nx - \frac{n}{2} + 1, & \text{for } \frac{1}{2} - \frac{1}{n} \le x \le \frac{1}{2}, \\ 1 & \text{for } x \ge \frac{1}{2}. \end{cases}$$

is Cauchy since $||f_n - f_m|| = |\frac{1}{2n} - \frac{1}{2m}|$, but its limit point is not continuous. \diamond The same space C[a, b] with the norm

$$||f|| := \max_{a \le x \le b} |f(x)|,$$

the space $\mathcal{L}_p[a, b]$ with $p \geq 1$, and any finite-dimensional normed vector space are complete.

- $\diamond~$ Any normed vector space V is isometrically isomorphic to a dense subset of a Banach space $\hat{V}.$
 - $\triangleright~X$ and Y are isomorphic if there exist a one-to-one mapping T of X onto Y such that

$$T(\alpha_1 \mathbf{x}_1 + \alpha_2 \mathbf{x}_2) = \alpha_1 T(\mathbf{x}_1) + \alpha_2 T(\mathbf{x}_2).$$

 \triangleright An isomorphism T is isometric if

$$||T(\mathbf{x})|| = ||\mathbf{x}||.$$

• A mapping A from a vector V into a vector space W is said to be a *linear operator* if

$$A(\alpha \mathbf{x} + \beta \mathbf{y}) = \alpha A(\mathbf{x}) + \beta A(\mathbf{y})$$

for all $\mathbf{x}, \mathbf{y} \in V$ and $\alpha, \beta \in \mathbb{F}$.

• A linear operator Λ is said to be *bounded* if

$$\|A\| := \sup_{\mathbf{x} \in V, \mathbf{x} \neq \mathbf{0}} \frac{\|A\mathbf{x}\|}{\|\mathbf{x}\|} < \infty$$

- ♦ The above calculation can be simplified to $||A|| = \sup_{||\mathbf{x}||=1} ||A\mathbf{x}||$.
- ♦ A bounded linear operator is uniformly continuous.
- ♦ If a linear operator is continuous at one point, it is bounded.
- \diamond An example: Show that the differential operator

$$D(f) = f'$$

is linear and unbounded from $C^{1}(a, b)$ to C(a, b) under some norms.

• Given a normed vector space X and a Banach space Y, the space

 $\mathcal{B}(X,Y) := \{A: X \longrightarrow Y | A \text{ is linear and bounded} \}$

is itself a Banach space with ||A|| as the norm.

• The dual space V^* of a normed vector space V is defined to be

 $V^* := \{ f : V \longrightarrow \mathbb{F} | f \text{ is linear and continuous} \}.$

- ♦ The dual space V* of any normed vector space is automatically a Banach space.
 ▶ Characterize the unit ball in V*.
- (Hahn-Banach Theorem) This theorem plays a fundamental role in optimization theory.
 - ♦ Let $p: V \longrightarrow \mathbb{R}$ be a function satisfying $p(x+y) \le p(\mathbf{x}) + p(\mathbf{y})$ and $p(\alpha \mathbf{x}) = \alpha p(\mathbf{x})$.
 - ♦ Suppose that f is a real-valued linear functional on a subspace S and that $f(\mathbf{s}) \le p(\mathbf{s})$ for all $\mathbf{s} \in S$.
 - ♦ Then there exists a linear functional $F : V \longrightarrow \mathbb{R}$ such that $F(\mathbf{x}) \leq p(\mathbf{x})$ for all $\mathbf{x} \in V$ and $F(\mathbf{s}) = f(\mathbf{s})$ for all $\mathbf{s} \in S$.
 - ▷ What is the geometric meaning of the Hahn-Banach theorem in \mathbb{R}^n ? • Pay attention to the minimum norm extension?

Hilbert Space

Hilbert spaces, equipped with their inner products, possess a wealth of geometric properties that generalize all of our understanding about the classical Euclidean space \mathbb{R}^n .

- A concept of orthogonality analogous to the "dot product" in \mathbb{R}^3 can be developed based on the "belief" of inner product. We use the algebraic expression of inner product to probe the inner structure of an abstract space.
- Orthogonality naturally leads to the notion of projection, which then leads to the idea of minimum distance. Though the minimum norm in a general normed vector space has a similar idea, the shortest distance by projection has a particularly appealing geometric intuition.

Inner Product

• Given a vector space X over a field \mathbb{F} (either \mathbb{C} or \mathbb{R}), we say that it is equipped with an *inner product*

$$\langle \cdot, \cdot \rangle : X \times X \to \mathbb{F}$$

if the inner product satisfies the following axioms:

- 1. $\langle \mathbf{x}, \mathbf{y} \rangle = \overline{\langle \mathbf{y}, \mathbf{x} \rangle}.$
- 2. $\langle \mathbf{x} + \mathbf{y}, \mathbf{z} \rangle = \langle \mathbf{x}, \mathbf{z} \rangle + \langle \mathbf{y}, \mathbf{z} \rangle.$
- 3. $\langle \alpha \mathbf{x}, \mathbf{y} \rangle = \alpha \langle \mathbf{x}, \mathbf{y} \rangle$.
- 4. $\langle \mathbf{x}, \mathbf{x} \rangle \geq 0$ and $\langle \mathbf{x}, \mathbf{x} \rangle = 0$ if and only if $\mathbf{x} = \mathbf{0}$.
- \diamond The quantity

$$\|\mathbf{x}\| := \langle \mathbf{x}, \mathbf{x} \rangle$$

naturally defines a vector norm on X.

 \diamond Two vectors **x** and **y** are said to be *orthogonal*, denoted by $\mathbf{x} \perp \mathbf{y}$, if $\langle \mathbf{x}, \mathbf{y} \rangle = 0$.

- Some basic facts:
 - \diamond (Cauchy-Schwarz Inequality) For all \mathbf{x}, \mathbf{y} in an inner product space,

$$\langle \mathbf{x}, \mathbf{y} \rangle \le \|\mathbf{x}\| \|\mathbf{y}\|.$$

Equality holds if and only if $\mathbf{x} = \alpha \mathbf{y}$ or $\mathbf{y} = \mathbf{0}$.

♦ (Parallelogram Law) With the induced inner product norm,

$$\|\mathbf{x} + \mathbf{y}\|^2 + \|\mathbf{x} - \mathbf{y}\|^2 = 2\|\mathbf{x}\|^2 + 2\|\mathbf{y}\|^2.$$

- \diamond (Continuity) Suppose that $\mathbf{x}_n \to \mathbf{x}$ and $\mathbf{y}_n \to \mathbf{y}$. Then $\langle \mathbf{x}_n, \mathbf{y}_n \rangle \to \langle \mathbf{x}, \mathbf{y} \rangle$.
- \diamond Note that these geometric properties follow from the algebraic definition of inner product.
- A complete inner product space is called a *Hilbert space*.

Orthogonal Complements

• Given any subset S in an inner product space X, the set

 $S^{\perp} := \{ \mathbf{y} \in X | \mathbf{y} \perp \mathbf{x} \text{ for every } \mathbf{x} \in S \}$

is called the *orthogonal complement* of S.

- $\diamond S^{\perp}$ is a closed subspace.
- $\diamond \ S \subset (S^{\perp})^{\perp}.$
- ♦ $(S^{\perp})^{\perp}$ is the smallest closed subspace containing S.
- We say that X is the *direct sum* of two subspaces M and N, denoted by $M = M \bigoplus N$, if every $\mathbf{x} \in X$ has a unique representation of the form $\mathbf{x} = \mathbf{m} + \mathbf{n}$ where $\mathbf{m} \in M$ and $\mathbf{n} \in N$.
 - ♦ The Classical Projection Theorem: Let M be a closed subspace of a Hilbert space H. Corresponding to every $\mathbf{x} \in H$,
 - ▷ There exists a unique $\mathbf{m}_0 \in M$ such that $\|\mathbf{x} \mathbf{m}_0\| \leq \|\mathbf{x} \mathbf{m}\|$ for all $\mathbf{m} \in M$.
 - \triangleright A necessary and sufficient condition that \mathbf{m}_0 be the unique best approximation of \mathbf{x} in M is that $\mathbf{x} \mathbf{m}_0 \perp M$.
 - ♦ If M is a closed linear subspace of a Hilbert space X, then $X = M \bigoplus M^{\perp}$.
- Given a vector $\mathbf{x}_0 \in X$ and a closed subspace M, the unique vector $\mathbf{m}_0 \in M$ such that $\mathbf{x}_0 \mathbf{m}_0 \in M^{\perp}$ is called the *orthogonal projection* of \mathbf{x}_0 onto M.

Gram-Schmidt Orthogalization Process

- Any given sequence (finite or infinite) $\{\mathbf{x}_n\}$ of linearly independent vectors in an inner product space X can be orthogonalized in the following sense.
 - \diamond There exists an orthonormal sequence $\{\mathbf{z}_n\}$ in X such that for each finite positive integer ℓ ,

$$\operatorname{span}\{\mathbf{x}_1,\ldots,\mathbf{x}_\ell\}=\operatorname{span}\{\mathbf{z}_1,\ldots,\mathbf{z}_\ell\}.$$

 \diamond Indeed, the sequence $\{\mathbf{z}_n\}$ can be generated via the Gram-Schmidt process.

$$\mathbf{z}_{1} := \frac{\mathbf{x}_{1}}{\|\mathbf{x}_{1}\|},$$
$$\mathbf{w}_{n} := \mathbf{x}_{n} - \sum_{i=1}^{n-1} \langle \mathbf{x}_{i}, \mathbf{z}_{i} \rangle \mathbf{z}_{i}, \quad n > 1,$$
$$\mathbf{z}_{n} := \frac{\mathbf{w}_{n}}{\|\mathbf{w}_{n}\|}, \quad n > 1.$$

 \diamond Show that in finite dimensional space, the Gram-Schmidt process is equivalent to that any full column rank matrix $A \in \mathbb{R}^{n \times m}$ can be decomposed as

$$A = QR$$

where $Q \in \mathbb{R}^{n \times m}$, $Q^T Q = I_m$, and $R \in \mathbb{R}^{m \times m}$, R is upper triangular.

- An example: Applying the Gram-Schmidt procedure with respect to a given inner product in the space $C^1[a, b]$ on the sequence of polynomials $\{1, x^1, x^2, \ldots\}$.
 - ♦ Six popular orthogonal polynomial families:
 - ▷ Gegenbuer: [-1,1], $\omega(x) = (1-x^2)^{a-\frac{1}{2}}$, a any irrational number of rational $\geq -\frac{1}{2}$.
 - \triangleright Hermite: $(-\infty, \infty), \omega(x) = e^{-x^2}$.
 - ▷ Laguerre: $[0, \infty), \omega(x) = e^{-x}x^a, a$ any irrational or rational ≥ -1 .
 - ▷ Legendre: Needed in Gaussian quadrature.
 - ▷ Jacobi: $[-1, 1], \omega(x) = (1 x)^a (1 + x)^b, a \text{ any irrational or ration} \ge -1.$
 - ▷ Chebyshev: $(-1, 1), \omega(x) = (1 x^2)^{\pm \frac{1}{2}}$.
 - $\diamond\,$ Show that the resulting orthonormal polynomials $\{z_n\}$ satisfy a recursive relationship of the form

$$z_n(x) = (a_n x + b_n) z_{n-1}(x) - c_n z_{n-2}(x), \quad n = 2, 3, \dots$$

where the coefficients a_n, b_n, c_n can be explicitly determined.

 \diamond Show that the zeros of the orthonormal polynomials are real, simple, and located in the interior of [a, b].

Best Approximation

One of the most fundamental optimization question is as follows:

- Let \mathbf{x}_0 represent a target vector in a Hilbert space X.
 - \diamond The target vector could mean a true solution that is hard to get in the abstract space X.
- Let M denote a subspace of X.
 - \diamond Consider *M* as the set of all computable, constructible, or reachable (by some reasonable means) vectors in *X*.
 - $\diamond~M$ shall be called a feasible set.
- Want to solve the optimization problem

$$\min_{\mathbf{m}\in M} \|\mathbf{x}_0 - \mathbf{m}\|.$$

Projection Theorem

• A necessary and sufficient condition that $\mathbf{m}_0 \in M$ solves the above optimization problem is that

$$\mathbf{x}_0 - \mathbf{m}_0 \perp M.$$

- $\diamond\,$ The minimizer \mathbf{m}_0 is unique, if it exists.
- $\diamond\,$ The existence is guaranteed only if M is closed.
- How to find this minimizer?
 - \diamond Assume that M is of finite dimension and has a basis

$$M = \operatorname{span}\{\mathbf{y}_1, \ldots, \mathbf{y}_n\}.$$

Write

$$\mathbf{m}_0 = \sum_{i=1}^n \alpha_i \mathbf{y}_i$$

.

Then $\alpha_1, \ldots, \alpha_n$ satisfy the normal equation

$$\langle \mathbf{x}_0 - \sum_{i=1}^n \alpha_i \mathbf{y}_i, \mathbf{y}_j \rangle = 0, \quad j = 1, \dots n.$$

 $\diamond\,$ In matrix form, the linear system can be written as

$$\begin{pmatrix} \langle \mathbf{y}_1, \mathbf{y}_1 \rangle & \langle \mathbf{y}_2, \mathbf{y}_1 \rangle & \dots & \langle \mathbf{y}_n, \mathbf{y}_1 \rangle \\ \langle \mathbf{y}_1, \mathbf{y}_2 \rangle & & & \\ \vdots & & \ddots & \vdots \\ \langle \mathbf{y}_1, \mathbf{y}_n \rangle & & & \langle \mathbf{y}_n, \mathbf{y}_n \rangle \end{pmatrix} \begin{pmatrix} \alpha_1 \\ \alpha_2 \\ \vdots \\ \alpha_n \end{pmatrix} = \begin{pmatrix} \langle \mathbf{x}_0, \mathbf{y}_1 \rangle \\ \langle \mathbf{x}_0, \mathbf{y}_2 \rangle \\ \vdots \\ \langle \mathbf{x}_0, \mathbf{y}_n \rangle \end{pmatrix}.$$

 $\triangleright\,$ If the basis $\{\mathbf{y}_1,\ldots,\mathbf{y}_n\}$ are orthonormal, then trivially

$$\alpha_i = \langle \mathbf{x}_0, \mathbf{y}_i \rangle.$$

- \diamond What can be done if M is not of finite dimension?
- \diamond If M is of codimension n, i.e., if the orthogonal complement of M has dimension n, then a dual approximation problem can be formulated.

Fourier Series

- Let $\{\mathbf{z}_n\}$ be an orthonormal sequence in a Hilbert space X.
 - \diamond The convergence of an infinite series in X can be identified as a square-summable sequence in \mathbb{R} in the following way:

$$\sum_{i=1}^{\infty} \xi_i \mathbf{z}_i \longrightarrow \mathbf{x} \quad \text{if and only if } \sum_{i=1}^{\infty} |\xi_i|^2 < \infty.$$

 $\diamond \ \xi_i = \langle \mathbf{x}, \mathbf{z}_i \rangle.$

• (Bessel's Inequality) Given $\mathbf{x} \in X$, then

$$\sum_{i=1}^{\infty} |\langle \mathbf{x}, \mathbf{z}_i \rangle|^2 \le \|\mathbf{x}\|^2.$$

 $\diamond\,$ The convergent series

$$\mathcal{F}(\mathbf{x}) := \sum_{i=1}^{\infty} \langle \mathbf{x}, \mathbf{z}_i
angle \mathbf{z}_i$$

guaranteed by Bessle's inequality is called the *Fourier series* of \mathbf{x} in X.

- $\triangleright \mathcal{F}(\mathbf{x})$ belongs to the closure of span $\{\mathbf{z}_n\}$.
- $\triangleright \mathbf{x} \mathcal{F}(\mathbf{x}) \perp \operatorname{span}\{\mathbf{z}_n\}$ (and hence its closure).
- \triangleright When will an orthonormal sequence $\{\mathbf{z}_n\}$ generate a Hilbert space?

- An orthonormal sequence $\{\mathbf{z}_n\}$ in a Hilbert space X is said to be *complete* if the closure of $span\{\mathbf{z}_n\}$ is X itself.
 - \diamond An orthonormal sequence $\{\mathbf{z}_n\}$ in a Hilbert space is complete if and only if the only vector orthogonal to each \mathbf{z}_n is the zero vector.
 - \diamond The subspace of polynomials is dense in $\mathcal{L}_2[-1,1]$.
 - $\diamond\,$ The Legendre polynomials, i.e., the orthonormal sequence

$$\mathbf{z}_n(x) = \sqrt{\frac{2n+1}{2}} \frac{(-1)^n}{2^n n!} \frac{d^n}{dx^n} (1-x^2)^n$$

is a complete in $\mathcal{L}_2[-1,1]$.

Minimum Norm Problems

The minimization problem described in the proceeding section can appear in different forms, including

- The dual approximation problem.
- The minimum energy control problem.
- The shortest distance to a convex set.

Dual Problem of Best Approximation

• Given $\{\mathbf{y}_1, \ldots, \mathbf{y}_n\}$ in a Hilbert space, define the feasible set

$$F := \{ \mathbf{x} \in H | \langle \mathbf{x}, \mathbf{y}_i \rangle = c_i \}.$$

Want to solve the minimum norm problem

 $\min_{\mathbf{x}\in F}\|\mathbf{x}\|.$

• Define

$$M := \operatorname{span}\{\mathbf{y}_1, \dots, \mathbf{y}_n\}$$

Then

$$F = \mathbf{c} + M^{\perp}$$

for some suitable $\mathbf{c} \in F$.

- \diamond Analogous to the notion that a general solution is the sum of a particular solution **c** and a general homogeneous solution M^{\perp} .
- \diamond We say that F is a linear variety with *codimension* n.
 - \triangleright Note that F (or M^{\perp}) itself could be of infinite dimension.

• Using the Projection Theorem, we know that the solution exists and is unique. Indeed, the optimal solution \mathbf{x}^*

$$\mathbf{x}^* \in M^{\perp \perp} = M.$$

- $\diamond \mathbf{x}^* = \sum_{i=1}^n \beta_i \mathbf{y}_i.$
- $\diamond\,$ The coefficients β_i are determined from the linear system

$$\begin{pmatrix} \langle \mathbf{y}_1, \mathbf{y}_1 \rangle & \langle \mathbf{y}_2, \mathbf{y}_1 \rangle & \dots & \langle \mathbf{y}_n, \mathbf{y}_1 \rangle \\ \langle \mathbf{y}_1, \mathbf{y}_2 \rangle & & & \\ \vdots & & \ddots & \vdots \\ \langle \mathbf{y}_1, \mathbf{y}_n \rangle & & & \langle \mathbf{y}_n, \mathbf{y}_n \rangle \end{pmatrix} \begin{pmatrix} \beta_1 \\ \beta_2 \\ \vdots \\ \beta_n \end{pmatrix} = \begin{pmatrix} c_1 \\ c_2 \\ \vdots \\ c_n \end{pmatrix}.$$

♦ What is the geometric meaning of the dual problem?

A Control Problem

• Consider the problem of minimizing

$$J(x,u) := \int_0^T (x^2(t) + u^2(t))dt$$

subject to

$$\dot{x}(t) = u(t), \quad x(0) =$$
given.

- \diamond The objective function represents a comprise between a desire to have x(t) small while simultaneously conserving control energy.
- Equip the product space $H = \mathcal{L}_2[0,T] \times \mathcal{L}_2[0,T]$ with the inner product

$$\langle (x_1, u_1), (x_2, u_2) \rangle = \int_0^T [x_1(t)x_2(t) + u_1(t)u_2(t)]dt.$$

• Let V be the linear variety

$$V := \{(x, u) \in H | x(t) = x(0) + \int_0^t u(\tau) d\tau \}.$$

- The control problem is equivalent to finding the element in V with minimal norm.
 - \diamond It can be shown that V is closed in H.
 - \diamond The Projection Theorem is hence applicable. The solution exists and is unique.
 - \diamond How to do the computation?

Minimum Distance to a Convex Set

- The concept of linear varieties can be generalized to convex sets.
- Given a vector \mathbf{x} and a closed convex subset K in a Hilbert space H,
 - \diamond There is a unique $\mathbf{k}_0 \in K$ such that

$$\|\mathbf{x} - \mathbf{k}_0\| \le \|\mathbf{x} - \mathbf{k}\|$$

for all $\mathbf{k} \in K$.

 \diamond A necessary and sufficient condition for \mathbf{k}_0 being the global minimizer is that

$$\langle \mathbf{x} - \mathbf{k}_0, \mathbf{k} - \mathbf{k}_0 \rangle \leq 0$$

for all $\mathbf{k} \in K$.

Linear Complementary Problem

• Given $\{\mathbf{y}_1, \ldots, \mathbf{y}_n\} \subset H$, and $\mathbf{x} \in H$, want to minimize

$$\|\mathbf{x} - \sum_{i=1}^n \alpha_i \mathbf{y}_i\|,$$

subject to $\alpha_i \geq 0$ for all *i*.

- The feasible set forms a cone.
 - ♦ There exists a unique solution $\hat{\mathbf{x}} = \sum_{i=1}^{n} \alpha_i \mathbf{y}_i$.
- Try to characterize the coefficients α_i .
 - \diamond Take $\mathbf{k} = \hat{\mathbf{x}} + \mathbf{y}_j$, then

$$\langle \mathbf{x} - \hat{\mathbf{x}}, \mathbf{y}_j \rangle \leq 0.$$

 \diamond Take $\mathbf{k} = \hat{\mathbf{x}} - \alpha_j \mathbf{y}_j$, then

$$\langle \mathbf{x} - \hat{\mathbf{x}}, -\alpha_j \mathbf{y}_j \rangle \leq 0$$

 \diamond Together,

 $\langle \mathbf{x} - \hat{\mathbf{x}}, \mathbf{y}_i \rangle \leq 0$, with equality if $\alpha_i > 0$.

- Rewrite in matrix form,
 - \diamond

$$\begin{pmatrix} \langle \mathbf{y}_1, \mathbf{y}_1 \rangle & \langle \mathbf{y}_2, \mathbf{y}_1 \rangle & \dots & \langle \mathbf{y}_n, \mathbf{y}_1 \rangle \\ \langle \mathbf{y}_1, \mathbf{y}_2 \rangle & & & \\ \vdots & & \ddots & \vdots \\ \langle \mathbf{y}_1, \mathbf{y}_n \rangle & & & \langle \mathbf{y}_n, \mathbf{y}_n \rangle \end{pmatrix} \begin{pmatrix} \alpha_1 \\ \alpha_2 \\ \vdots \\ \alpha_n \end{pmatrix} - \begin{pmatrix} \langle \mathbf{x}, \mathbf{y}_1 \rangle \\ \langle \mathbf{x}, \mathbf{y}_2 \rangle \\ \vdots \\ \langle \mathbf{x}, \mathbf{y}_n \rangle \end{pmatrix} = \begin{pmatrix} z_1 \\ z_2 \\ \vdots \\ z_n \end{pmatrix}.$$

- $\diamond \ z_i \ge 0 \text{ for all } i.$
- $\diamond \ \alpha_i z_i = 0 \text{ for all } i.$
- Check out CPnet for more discussions on complementary problems.

Quadratic Programming Problem

• Given a symmetric positive-definite matrix $Q \in \mathbb{R}^{n \times n}$, $A \in \mathbb{R}^{m \times n}$, m < n, and $\mathbf{b} \in \mathbb{R}^{m}$, want to minimize

 $\mathbf{x}^T Q \mathbf{x},$

subject to $A\mathbf{x} = \mathbf{b}$.

• The feasible set is a linear variety,

$$A\mathbf{x} = \mathbf{b} \iff \mathbf{x} \in \mathbf{x}_0 + \mathcal{N}(A).$$

 $\diamond \ \mathcal{N} = \mathcal{R}(A^T)^{\perp}.$

- This is a minimum norm problem.
 - $\diamond \ \langle \mathbf{x}, \mathbf{y} \rangle = \mathbf{x}^T Q \mathbf{y} \text{ defines an (oblique) inner product.}$
- Write down a numerical algorithm for the solution.

Basic Principles in Optimization

According to David Luenberger, the theory of optimization can be summarized from a few "simple, intuitive, geometric relations." These are

- The Projection Theorem.
 - $\diamond\,$ The simplest form of this theorem is that the shortest line from a point to a plane is necessarily perpendicular to the plane.
- The Hahn-Banach Theorem.
 - $\diamond\,$ The simplest form of this theorem is that a sphere and a point not in the sphere can be "separated" by a hyperplane.
- Duality
 - ◇ The simplest way to describe the duality is that the shortest distance from a point to a convex set is equal to the maximum of the distance from the point to a hyperplane separating the point from the convex set.
- Differentials.
 - \diamond In \mathbb{R}^n , a functional is optimized only at places where the gradient vanishes.

Each of these notions can easily be understood in \mathbb{R}^3 and can be extended into infinitedimensional space.