
Chapter 2

Examples of Applications

The purpose of this chapter is to provide some examples of optimization where the previously
mentioned basic principles can be applied. Each of the following subjects has been a major
mathematical study. Only the ideas are outlined in this chapter. More details will be discussed
later.

• Nonlinear Programming

• Linear Programming

• Calculus of Variation

• Optimal Control

33



34 Applications

Nonlinear Programming

A main tool used in nonlinear programming is the theory of Lagrange multipliers.

• The geometry of Lagrange multipliers is easy to understand in finite dimensional space,
but the entire notion can be generalized to Banach space.

• An equality constrained optimization problem can be reformulate via the notion of La-
grange multipliers as an unconstrained problem. As such, necessary and sufficient condi-
tions for constrained problems are similar to those of unconstrained problems.

• An inequality constrained problem can be reformulated as an equality constrained prob-
lem by adding extra variables or inequalities. As such, the idea of active constraints,
where the equality holds, become important.
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Equality Constrained Problem

• Consider the model problem

Minimize f(x)

subject to g(x) = 0,

¦ f : D ⊂ Rn −→ R.

¦ g : D ⊂ Rn −→ Rm, m < n.

• A necessary condition that x0 be a relative minimum is that there exists λ0 ∈ R, λ ∈ Rm

with (λ0, λ) 6= 0 such that

¦ If
F (x, λ) := λ0f(x) + λ>g(x),

¦ Then
∇F (x0, λ) = 0.
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• The proof is quite insightful!

¦ Consider the artificial function H : Rn × R → R× Rm,

H(x, u) := (f(x)− f(x0)− u,g(x)).

¦ Obviously H(x0, 0) = 0.

¦ Note that
∂H

∂x

∣
∣
∣
∣
(x0,0)

= [∇f(x0),∇g1(x0), . . . ,∇gm(x0)] .

¦ If the columns are linear independent, then by the implicit function theorem there
exists a neighborhood of (x0, 0) in which H(x, u) ≡ 0.

¦ In particular, there exist x and u < 0 such that f(x) = f(x0) + u < f(x0).

• If ∇g(x0) has linearly independent “rows”, then λ0 6= 0.

• What is the geometric meaning of the Lagrange multipliers?
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Inequality Constrained Problems

• Consider the model problem

Minimize f(x)

subject to g(x) = 0,

h(x) ≤ 0,

¦ f : D ⊂ Rn −→ R.

¦ g : D ⊂ Rn −→ Rm, m < n.

¦ h : D ⊂ Rn −→ Rp.

• A necessary condition that x0 be a relative minimum is that there exists vector λ ∈ Rm

and µ ∈ Rp such that

¦ ∇f(x0) + λ>∇g(x0) + µ>∇h(x0) = 0.

¦ µ>h(x0) = 0.

. If hj(x0) < 0, then µj = 0.

. If µj > 0, then hj(x0) = 0.

¦ µj ≥ 0, j = 1, . . . ,m.

• Prove the above conditions. (The Kuhn-Tucker Theorem)
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Linear Programming

The development of linear programming has been ranked among the most important scien-
tific advances of the mid-twentieth century.

• Linear programming typically deals with the problem of allocating limited resources

among competing activities in the best possible, i.e., optimal, way.

• The adjective “linear” means that all the mathematical functions in the underling model
are required to be linear functions.

• The most noted techniques for solving linear programming problem have been the simplex

method and then the interior point method.
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Discrete Model

• Suppose that there are m limited resources to be allocated among n competing activities.

• Define the following notation:

¦ xj = the level of activity j.

¦ cj = the “increase” in profit Z resulted from each unit increase in xj.

¦ bi = the amount of resource i available for allocation.

¦ aij = the amount of resource i consumed by each unit of activity j.

• Standard form:

Maximize Z = c1x1 + . . . cnxn

subject to a11x1 + a12x2 + . . .+ a1nxn ≤ b1

a21x1 + a22x2 + . . .+ a2nxn ≤ b2

...

am1x2 + am2x2 + . . . amnxn ≤ bm

x1, x2, . . . , xn ≥ 0.

• The feasible solutions, that is, the vector x = [x1, . . . , xn]
T ∈ Rn whose components

satisfy all the constraints, form a convex set cut out by hyperplanes.
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• Some critical observations:

¦ The optimal solution occurs necessarily at “corner-point” feasible solutions.

¦ There are only finitely many corner-point feasible solutions.

¦ If a corner-point feasible solution is better (as measured by Z) than all its adjacent

corner-point feasible solutions, then it is better than all other corner-point feasible
solutions, i.e., it is optimal.

• The main idea in the simplex method is to identify the corner-point solutions and to
check the optimality among adjacent corner-point solutions effectively.

¦ Details of the simplex method will not be reviewed in this note.
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Dual Problem

• Denote the primal linear programming problem in matrix form

Maximize c>x

subject to Ax ≤ b

x ≥ 0.

• The associated dual problem is

Minimize y>b

subject to y>A ≥ c>

y ≥ 0.

¦ What is the meaning of the dual problem?

• Define

¦ yi = the “shadow” price (affected by the “market” price of products) of each unit
of resource i.
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• Want to

Minimize y1b1 + . . .+ ymbm (Total value of resources)

subject to y1a11 + . . .+ ymam1 ≥ c1

y1a12 + . . .+ ymam2 ≥ c2

...

y1a1n + . . .+ ymamn ≥ cn

y1, . . . , ym ≥ 0

¦ One unit of activity j will consume, respectively, a1j, . . . , amj units of resources.

¦ The expense of one unit of activity j, i.e.,
∑m

i=1 yiaij must generate at least the value
cj in profit Z.

• Weak Duality Theorem:
c>x ≤ y>Ax ≤ y>b.

• Duality Theorem:
max c>x = miny>b,

if the feasible set is not empty.



Linear Programming 43

An Illustration of the Dual Problem

• Assumptions:

¦ The minimal daily requirement of calories and vitamins for an adult are 750 calories
and 400 units of vitamins.

¦ There are 5 categories of food to choose from with the following nutrition content:

Calories Vitamins Market Prices

A 1 0 2
B 0 1 20
C 1 0 3
D 1 1 11
E 1 1 12
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Calories Vitamins Market Prices

Dentice alle olive 1 0 2
Polipetti in casseruola 0 1 20

Taralli 1 0 3
Fettuccine al frutto di riccio 1 1 11
Orecchiette con le braciole 1 1 12
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• To find the optimal diet,

¦ Let xi, i = 1, . . . , 5, denote the respective amount of food in a diet.

¦ Want to minimize
W = 2x1 + 20x2 + 3x3 + 11x4 + 12x5,

subject to

x1 + x3 + x4 + x5 ≥ 750,

x2 + x4 + x5 ≥ 400,

x1, . . . , x5 ≥ 0.

¦ W is the total price paid for food.
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• The dual problem:

¦ Let

y1 = the unit price of calorie,

y2 = the unit price of vitamins.

¦ Want to maximize
Z = 750y1 + 400y2,

subject to

y1 ≤ 2,

y2 ≤ 20,

y1 + y2 ≤ 3,

y1 + y2 ≤ 11,

y1 + y2 ≤ 12,

y1, y2 ≥ 0.

¦ Z is the total price paid for nutrition.
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Convex Programming

• A more general setting that includes the linear programming problem is the so called
convex programming problem.

Minimize f(x),

subject to G(x) ≤ θ,

x ∈ Ω

where

¦ Ω is a convex set of a vector space X.

¦ f : Ω −→ R is a convex functional.

¦ G : Ω −→ Z is a convex map into a normed vector space Z with positive cone.
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A Continous Case

• Suppose a single goods is being produced which is either sold for reinvestment or kept in
the inventory for future usage.

• Assume

¦ x1(t) = rate of production.

¦ x2(t) = rate of reinvestment.

¦ x3(t) = rate of storage.

• Whereas

¦ x1(t) = x2(t) + x3(t).

¦ The reinvestment increases the production rate via ẋ1(t) = x2(t) with initial rate
x1(0) = x0 > 0.

¦ x1(t), x2(t), x3(t) ≥ 0 for all t ≥ 0.

• Want to maximize the storage over a period of time [0, T ].

• Express the problem in terms of x2(t) as

Maximize
∫ T

0

{

x0 +
∫ t

0
x2(τ)dτ − x2(t)

}

dt

subject to x0 +
∫ t

0
x2(τ)dτ ≥ x2(t)

x2(t) ≥ 0

¦ This is an infinite-dimensional “linear” programming problem.

¦ The feasible solutions are defined “implicitly” by the constraints.

¦ The problem can be handled by the theory of Lagrange multiplier.
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Calculus of Variations

The earliest work of optimization, called the calculus of variations, began in 1969 with
the Brachistochrone problem. It then developed into the optimal control theory, mainly by
the governments for military usage, in the 1950’s. The theory of nonlinear programming,
characterized by the use of Lagrange multiplier principles, came into play only in the last forty
years.

• Calculus of Variations and optimal control theory involve functionals as opposed to real-
valued functions involved in nonlinear programming.

• The idea of differentiation from calculus can still be used in the space of functionals. This
is the basis of the Euler-Lagrange equation.
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The Brachistochrone Problem

• Assume that a particle move on a vertical plane under the influence of gravity only. Find
the path so that the particle moves between two points in the shortest time.

• Assume the two points are located at (a, 0) and (b, B) with a < b and B > 0.

• Some physics:

¦ Energy transformation: 1
2
mv2(t) = mgy(x).

¦ v(t) = ds
dt

where s(t) = distance travelled.

¦ Travel time versus the current logistics:

dt =
ds

v
=

√

1 + (y′(x))2
√

2gy(x)
dx.

• Formulation:

Minimize t =
∫ b

a

√
1+(y′(x))2√

2gy(x)
dx

subject to y(a) = 0, y(b) = B.

¦ Find the optimal solution y(x).
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Euler-Lagrange Equation

• Consider the general problem

Minimize I(y) =
∫ b

a
f(x,y(x),y′(x))dx,

subject to y(a) = ya,y(b) = yb,

where f : R× Rn × Rn −→ R is smooth and y : [a, b] −→ Rn is piecewise smooth.

• Define

F (ε) :=

∫ b

a

f(x,y(x, ε),y′(x, ε))dx,

¦ y(x, ε) := y(x) + εz(x).

¦ z(x) is piecewise continuous with z(a) = z(b) = 0.

• Expand F (ε) around ε = 0 to obtain

F (ε) = F (0) + ε

∫ b

a

(

z>(x)
∂f

∂y
+ z′(x)>

∂f

∂y′

)

dx

︸ ︷︷ ︸

F ′(0)

+
1

2
ε2
∫ b

a

(

z>(x)
∂2f

∂y2
z(x) + 2z(x)>

∂2f

∂y∂y′
z′(x) + z′(x)>

∂2f

∂y′∂y′
z′(x)

)

dx

︸ ︷︷ ︸

F ′′(0)

+O(ε3).
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• From calculus, the necessary condition of being a minimizer is F ′(0) = 0 and F ′′(0) ≥ 0.

¦ Upon integration by parts,

0 = F ′(0) = z(x)>
∫ x

a

∂f

∂y
ds

∣
∣
∣
∣

b

a

+

∫ b

a

z′(x)>
(

−
∫ x

a

∂f

∂y
ds+

∂f

∂y′

)

dx

for all piecewise continuous function z(x) with zero boundary values.

¦ It follows that at the critical point y0, the Euler-Lagrange equation (in integral
form)

∂f

∂y′
(x, y0(x), y

′
0(x)) =

∫ x

a

∂f

∂y
(s, y0(s), y

′
0(s))ds+ c

must be satisfied.

¦ Equivalently, the Euler-Lagrange equation in differential form is

∂f

∂y
(x, y0(x), y

′
0(x)) =

d

dx

∂f

∂y′
(x, y0(x), y

′
0(x)).

• Use the Euler-Lagrange equation to solve the brachistochrone problem.
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Optimal Control

• The calculus of variations is a special case of optimal control theory achieved by consid-
ering the control variable u(t) to be the derivative of the state variable x′(t).

• The first necessary condition in optimal control theory is the Pontryagin Maximum Prin-
ciple.

• The idea of Lagrange multipliers in calculus can be carried over to abstract function space
with the notion of Fréchet derivatives.
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Basic Formulation

• Consider the optimization problem

Minimize J(x,u) = h(b,x(b)) +

∫ b

a

f(t,x,u)dt

subject to x′(t) = g(t,x,u)

x(a) = ξ,

x(b) = η,

u ∈ U .

¦ x(t) = [x1(t), . . . , xn(t)]
> is the state variable.

¦ u(t) = [u1(t), . . . , um(t)]> is the control variable.

¦ S(b) is a surface in Rn.

¦ U ⊂ Rm is the set of controls.

¦ f, g, h are sufficiently smooth functions.

• Find the optimal control u0(t) from U that drives the trajectory of x0(t) starting from
(a, ξ) according to the trajectory equation to the point (b,x(b)) with x(b) ∈ S so that
the objective functional J(x,u) is minimized.
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Hamilton-Jacobi Equations

• The above problem can be case as an equality constrained optimization of the form

Minimize f(x)

subject to g(x) = 0,

¦ f : X −→ R.

¦ g : X −→ Z.

¦ Both X and Z are some Banach spaces.

• Being able to measure the norm of a vector, we should be able to define the notion of
Fréchet derivative and smoothness on the abstract functions f and g.

• The notion of Lagrange multiplier can be generalized which leads to the necessary con-
ditions for the optimal control.

¦ For p(t) = [p1(t), . . . , pn(t)]
>, define the Hamiltonian function

H(t,x,u,p) = f(t,x,u) + p>g(t,x,u).

¦ (x0,u0) is an optimal control only if there exists a function p0(t) such that

. x′(t) = Hp(t,x,u,p).

. p′(t) = −Hx(t,x,u,p).

. Hu(t,x,u,p) = 0.

. x(a) = ξ.

. x(b) = η.


