Chapter 4

Linear Estimation Theory

e Virtually all branches of science, engineering, and social science for data analysis, sys-
tem control subject to random disturbances or for decision making based on incomplete
information call for estimation theory.

e Many estimation problem can be formulated as a minimum norm problem in Hilbert
space.

e The projection theorem can be applied directly to the area of statistical estimation.
e There are a number of different ways to formulate a statistical estimation.

¢ Least squares.
o Maximum likelihood

¢ Bayesian techniques.

e When all variables are Gaussian statistics, these techniques produce linear equations.
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Preliminaries

e If x is a real-valued random variable,

o The probability distribution P of the variable x is defined to be
P(&) = Prob(x < &).

o The “derivative” p(§) of the probability distribution P(§) is called the probability
density function (pdf) of the variable z, i.e.,

> Note that
> p(§) > 0 for all €.

e The expected value of any function g of x is defined to be

o The expected value of x is E[x].

o The variance of z is E[(x — E[z])?].



e For random vector x = [z1,..., 2,
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¢ There is a joint probability distribution P defined by
P(&, ... &) = Prob(xy; <&, ... x, < &).
o The covariance matriz cov(x) is defined by
cov(x) = & [(x — E[x]) (x — E[x]) ] .

> Two random variables x; and x; are said to be uncorrelated or stochastically
independent if

El(x1 — Elz]) (22 — Elza])] = E[z1 — E[11]|E[22 — E[22]].
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Least Squares Model

e This is a familiar subject as we have seen in many occasions.
e This problem is not a statistical one.

e [t amounts to approximating a vector y € R™ by a vector lying in the column space of
W e R™™ and n < m.

¢ We assume a linear model that the response y is related to the input 3 linearly, i.e.,
y=Wg.

o We would like to recover 3 from observed y. (Would it be a linear relationship?)

¢ We are not assuming that the observed y carries errors.

e [t would be interesting to compare the least squares setting with those with random
noises.
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Least Squares Formulation

e Given

¢ A known matrix W € R™" n < m.

¢ An observation vector y € R™.

Find 8 € R” such that ||y — W/3|| is minimized over all 3 € R™.

By the projection theorem, the solution exists and is unique.

The normal equation is given by

W'y —Wwg) =0.

If W has linear independent columns, then

B=WW)"'w'y.
—_——

K

¢ Note that the optimal solution B is related to y linearly.
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Gauss-Markov Model

e A more realistic model in an experiment is
y=WpB+e.

o W e R™" is known.
o € € R™ is a random vector with zero mean and covariance €(ee’) = Q.

¢ y represents the outcome of inexact measurements in R™.

e Want to estimate unknown parameter vector 3 € R” from y € R™ using

with K an unknown matrix in R"*™.

e Suppose the approximation is measured by minimizing the expected value of the error,
ie.,

min €[)|8 — I’

KER”XWL
¢ Since y carries random noise, it is a random vector.
¢ Both estimate 3 and the difference 8 — 3 are random vectors.

¢ The statistics of these random vectors are determined by those of € and K.
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Gauss-Markov Estimate

e Observe that

ENB-BIP] = EUKWB+e)—B,K(WB+e)—B)]
IKWB — B+ E[(Ke, Ke)).

e Consider unbiased estimation:

¢ Observe

A

EB] =E[KWB + Ke| = KWE[B].
It is expected that KW = I,,.

¢ The problem now becomes, given a symmetric and positive definite matrix @),

minimize g cgnxm  trace KQK'
subject to KW =1,.

¢ This is in the form of a standard minimum norm problem.
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e The problem has a closed form solution.

¢ The optimal solution is given by
K=WTQ'w) wig

¢ The minimum-variance unbiased estimation of 3 is given by
B=(WTQ W) WTQ .

¢ The special case () = I,,, is the classical least squares problem.

> The classical least squares solution is providing the unbiased minimum-variance
estimate of 3, if the perturbation presented in data is white noise.

e [t can be argued that the above solution BZ is the minimum-variance unbiased estimation
of B, for each individual 7.

¢ This is the true minimum-variance unbiased estimate.



Minimum- Variance Model 111

Minimum-Variance Model

e Assume in the linear model
y=WpB+e.
o W e R™™ is known.
o € € R™ is a random vector with zero mean and covariance €(ee’) = Q.
¢ 3 is a random vector in R™ with known statistical information.

¢ y represents the outcome of inexact measurements in R™.
e Want to estimate the unknown random vector 8 € R" based on y € R™ using
B:=Ky
where K is an unknown matrix in R™*™.

e The best approximation is measured by minimizing the expected value of the random
error, i.e.,

min €[)|8 — BII’

KecRnXxXm
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Minimum-Variance Estimate

e Assume (E[yy”])~! exists. Then the minimum-variance estimator of (3 is given by

B=EBy"IElyy )y
¢ The estimate is independent of W and e.
e Proof Is Interesting!
o Write K in rows, i.e., K = [k{,...k}]T.
o E[IB - BI7) = i €1 = 8% = Ty El(]y = 5,)?].
> Suffices to consider each individual term.

o Let f(y, ;) denote the (unknown) joint pdf of y and f;.
> Define

gki) = El(y ki —@)]

- / / 1y, 8) dy ds;

> Necessary condition is Vg(k;) = 0.



Minimum- Variance Model 113

o Easy to see

dg
8km - // Bz YJf(Y> ﬁz) dy dﬁz
= — 3yl
© Rewrite the necessary condition as
Ely(y'ki— )] = 0, (for each i)

Elyy'|K" = ElyB'], (in matrix form)
K = EBy"Eyy D"

e The estimate so far is biased, unless E[B] = E[y| = 0.

e In the general case where £[3] = B, and Ely] = yo,

¢ The estimate should assume the form
B = Ky +b.
¢ The minimum-variance estimate is given by

B=8+EB- By —y0)IEy - yo)y —¥0) ') 'y — ¥0).
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Equivalent Formulas

e Assume that

Elee'] = Q e R™™,
£BB'] = ReR™™,
EleB'] = 0eR™™,

e Then the minimum-variance estimate can be written as

A

B = RWI(WRW +Q)y

K

K

Ve

— (WTQflw_'_Rfl)fleQny.

¢ The equivalence can be proved by direct substitution.

¢ Check out the dimension of the inverse matrices involved in the two expressions.
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Comparision with Gauss-Markov Estimate

The Gauss-Markov estimate is

B=WTQw) wTQly.
e The more subtle minimum-variance estimate is

B _ (WTQ—lW + R_l)_leQ_ly.

o If R7! =0, the two estimates are idential.
o What is meant by R~ = 07?
o Infinite variance of B in the more subtle estimate means that we have absolutely no
a priori knowledge of 3 at all.
e When 3 is considered as a random variable, the size m of observations y does not need

to be large.

o (WRWT + Q)1 exists so long as @ is positive positive definite.

¢ Every new measurement simply provides additional information which may modify
the original estimate.
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Application to

Adaptic

Optics

Estimation

Imaging through the Atmosphere

Adaptive Optics System

¢ Basic Relationships
¢ Open-loop Model
¢ Closed-loop Model

Adaptive Optics Control

¢ An Ideal Control
¢ An Inverse Problem

¢ Temporary Latency

Numerical Hlustration
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Atmospheric Imaging Computation

e Purpose:

¢ To compensate for the degradation of astronomical image quality caused by the
effects of atmospheric turbulence.

e Two stages of approach:

o Partially nullify optical distortions by a deformable mirror (DM) operated from a
closed-loop adaptive optics (AO) system.
¢ Minimize noise or blur via off-line post-processing deconvolution techniques (not
this talk).
e Challenges:

© Atmospheric turbulence can only be measured adaptively.
¢ Need theory to pass atmospheric measurements to knowledge of actuating the DM.

¢ Require fast performance of large-scale data processing and computations.
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A Simplified AO System

Induced Wave Front
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Basic Notation

e Three quantities:

o ¢(t) = turbulence-induced phase profile at time ¢.
o a(t) = deformable mirror (DM) actuator command at time ¢.

o s(t) = wavefront slope sensor (WFS) measurement at time ¢ and with no correction.

e Two transformations:

o H := transformation from actuator commands to resulting phase profile adjust-
ments.

©o G := transformation from actuator commands to slope sensor measurement adjust-
ments.



120 Estimation

From Actuator to DM Surface

e H is used to describe the DM surface change due to the application of actuators.

e 7;(Z) = influence function on the DM surface at position ¥ with an unit adjustment to
the ith actuator.

e Assuming m actuators and linear response of actuators to the command, model the DM

surface by
m

S(E, 1) = a;(t)ri(F).

i=1

o Sampled at n DM surface positions, can write

¢(t) = Ha(t)

t) = [0(Z1,1), ..., d(Zn, )]T € R™ = discrete corrected phase profile at time ¢.
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From Actuator to WES Measurement

e (5 is used to describe the WE'S slope measurement associated with the actuator command
a.

e Consider the H-WFS model where
s(t) = —/df(VWj(f)gb(f, t), j=1,...,¢

o W, = given specifications of jth subaperture.

~

e The measurement corresponding to ¢(Z,t) would be

0 =3 (= [ @@ ) ao,

=1 o /

~~

¢ Can write

5(t) = Gal(t)

where G = [G;;] € R™>™.

o The DM actuators are not capable of producing the exact wavefront phase ¢(Z, t)
due to its finiteness of degrees of freedom. So § = Gla is not an exact measurement.
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A Closed-loop AO Control Model

Open-loop Closed-loop
Sensor Measurements Sensor Measurements
s As=s-Ga
>
Corrected A (Estimated Residual
Sensor s=Ga

Phase Error)

Measurement
Actuator
Command
a
Loop Compensation
v P P Reconstructor
Corrected A

Phase Profile ¢=Ha

D
¢ A¢=¢-Ha

Open-loop Closed-loop
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What is Available?

e Two residuals that are available in a closed-loop AO system:

o AG(t) = 6(t) — Ha(?)
> Represents the residual phase error remaining after the AO correction.

> Also means instantaneous closed-loop wavefront distortion at time t.
o As(t) := s(t) — Ga(t)
> Represents feedback applied to s(t) by DM actuator adjustment.

> Also means observable wavefront sensor measurement at time ¢.
e In practice, there is a servo lag or delay in time At, i.e., it is likely

o Ap(t) := ¢(t) — Ha(t — At).
o As(t) = s(t) — Ga(t — At).

Thus the data collected are not perfect.
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Open-loop Model

e Assume a linear relationship between open-loop WFS measurement s and turbulence-

induced phase profile ¢:
=W 0

¢ € = measurement noise with mean zero.

¢ In the H-WFS model, W represents a quadrature of the integral operator evaluated
at designated positions Z;, j = 1,...n.

e Want to estimate ¢ using é from the model

¢ = Eopens

so that the variance
7112
Elll¢ = ol7]
is minimized.
¢ The wave front reconstruction matrix Eype, is given by

Eopen = €[¢5T] (S[SST])’l.

¢ For unbiased estimation, need to enforce the condition that E,,.,W = I.
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Closed-loop Model

e For the H-WFS model, it is reasonable to assume the relationship

WH =G. (2)

e Then

s = Wo+e
W(Ha+ Ag) +¢€
= WHa+ (WA¢ +e).

It follows that

| As=WA¢+e (3)

o The closed-loop relationship (3) is identical to the open-loop relationship (1).
e Can estimate the residual phase error A¢(t) using A¢(t) from the model
A& = EclosedAS

o FEoseq = wavefront reconstruction matrix.

¢ For unbiased estimation, it requires that F,,..qW = I. Hence

EclosedG = eclosed(VV[—[) = H.
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Actuator Control

e An Ideal Control:

o A¢ = residual error after DM correction by current command a...

¢ New command a, should reduce the residual error, i.e., want to
min ||Ha — ¢||.
a
¢ Define Aa := ay — a., then want to
min [|HAa — Ag]|.
Aa

o But A¢ is not observable directly. It has to be estimated from As.

e Estimating Aa directly from As:

(4)
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An Inverse Problem
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Actuator Control with Temporary Latency

e Due to finite bandwidth of the control loop, As is not immediately available.

e Time line for the scenario of a 2-cycle delay,

estimate A¢ (t)

measure As(t) command a(t+2At) active

o ARMA control scheme:
p
a(t + 2At) = Z cra(t + (1 — k)At)
k=0

q
+> b MAs(t — jAL).

J=0

OJ(T+2) = Zi:o Cka(r—’—l_k) + Z?:O bijAS(r_j), r= 0, 1, S
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Expected Effect on the AO System

e Suppose

o exp[s(t)] is independent of time ¢ throughout the cycle of computation.

o Matrix > %, b;M; is of full column rank.
e Then

o The WFS feedback measurement As(™ is eventually nullified by the actuators, i.e.,

exp[s] = G lim exp[a™].
n—oo
¢ The expected residual phase error is inversely related to the expected WFS mea-
surement noise € via

0 =W lim exp[A¢™] + exple].
e Compare with the ideal control:

o Even if exple] = 0, not necessarily exp||| lim, .., A¢,|[?] will be small because W
has non-trivial null space.
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Almost Sure Convergence

e Each control a"*7) is a random variable = The control scheme is a stochastic process.

e Each control A"+7) is also a realization of the corresponding random variable = The
control scheme is a deterministic iteration.

e Convergence of deterministic iteration on independent random samples = Almost sure
convergence of stochastic process.

e Need fast convergence:

© Stationary statistic is not realistic.
¢ Atmospheric turbulence changes rapidly.

o Can only assume stationary statistic for a short period of time.
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e Define
Ay = [a"D @Y gt DT e =01,
q
b = [> bMGs,0,...,0".
3=0
e The ARMA scheme becomes
Arqo = Aar+1 +b
where A is the m(q + 2) x m(q + 2) matrix
— COIm Cl-[m - boMlG oo Cq+1jm - quqG ]
I, 0 0
A= 0 I,
|0 0 oo Iy, 0 |

e Almost convergence <= Spectral radius p(A) of A is less than one.

e Asymptotic convergence factor is precisely p(A).
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Numerical Simulation

e Consider the 2-cycle delay scheme

a(t + 2At) = a(t + At) + 0.6 H W As(t).

o Test data:
surface positions n = 5)
number of actuators m = 4
number of subapertures ¢ = 3
size of random samples z = 2500
H = rand(n, m)
W = rand(l,n)
G = WH
Ly = rand(n,n)
L. = diag(rand(¢,1))
Lo = zeros(n, 1)
Le = zeros({, 1)

e Random samples:

¢ = pg*ones(l,z)+ Ly *randn(n, z),
€ = pexones(l,z)+ Lexrandn(l, z).



