Chapter 4

Linear Estimation Theory

- Virtually all branches of science, engineering, and social science for data analysis, system control subject to random disturbances or for decision making based on incomplete information call for estimation theory.
- Many estimation problem can be formulated as a minimum norm problem in Hilbert space.
- The projection theorem can be applied directly to the area of statistical estimation.
- There are a number of different ways to formulate a statistical estimation.
	- \Diamond Least squares.
	- \diamond Maximum likelihood
	- \diamond Bayesian techniques.
- When all variables are Gaussian statistics, these techniques produce linear equations.

Preliminaries

- If x is a real-valued random variable,
	- \Diamond The probability distribution P of the variable x is defined to be

$$
P(\xi) = \text{Prob}(x \le \xi).
$$

 \Diamond The "derivative" $p(\xi)$ of the probability distribution $P(\xi)$ is called the probability density function (pdf) of the variable x , i.e.,

$$
P(\xi) = \int_{-\infty}^{\xi} p(x) dx.
$$

 \triangleright Note that

$$
\int_{-\infty}^{\infty} p(x)dx = 1.
$$

 \rhd $p(\xi) \geq 0$ for all ξ .

• The expected value of any function g of x is defined to be

$$
\mathcal{E}[g(x)] := \int_{-\infty}^{\infty} g(\xi) p(\xi) d\xi.
$$

- \Diamond The expected value of x is $\mathcal{E}[x]$.
- \Diamond The variance of x is $\mathcal{E}[(x-\mathcal{E}[x])^2]$.
- For random vector $\mathbf{x} = [x_1, \dots, x_n]^\top$,
	- \Diamond There is a *joint probability distribution P* defined by

$$
P(\xi_1,\ldots,\xi_n)=\mathrm{Prob}(x_1\leq \xi_1,\ldots,x_n\leq \xi_n).
$$

 \Diamond The *covariance matrix* cov(**x**) is defined by

$$
cov(\mathbf{x}) = \mathcal{E}\left[(\mathbf{x} - \mathcal{E}[\mathbf{x}])(\mathbf{x} - \mathcal{E}[\mathbf{x}])^{\top} \right].
$$

 \triangleright Two random variables x_i and x_j are said to be uncorrelated or stochastically independent if

$$
\mathcal{E}[(x_1-\mathcal{E}[x_1])(x_2-\mathcal{E}[x_2])]=\mathcal{E}[x_1-\mathcal{E}[x_1]]\mathcal{E}[x_2-\mathcal{E}[x_2]].
$$

Least Squares Model

- This is a familiar subject as we have seen in many occasions.
- This problem is not a statistical one.
- It amounts to approximating a vector $y \in \mathbb{R}^m$ by a vector lying in the column space of $W \in \mathbf{R}^{m \times n}$ and $n < m$.
	- \Diamond We assume a linear model that the response y is related to the input β linearly, i.e.,

$$
\mathbf{y}=W\boldsymbol{\beta}.
$$

- \Diamond We would like to recover β from observed y. (Would it be a linear relationship?)
- \diamond We are not assuming that the observed y carries errors.
- It would be interesting to compare the least squares setting with those with random noises.

Least Squares Formulation

- Given
	- $\Diamond A$ known matrix $W \in \mathbb{R}^{m \times n}$, $n < m$.
	- \Diamond An observation vector $\mathbf{y} \in \mathbb{R}^m$.

Find $\hat{\boldsymbol{\beta}} \in \mathbb{R}^n$ such that $\|\mathbf{y} - W\hat{\boldsymbol{\beta}}\|$ is minimized over all $\boldsymbol{\beta} \in \mathbb{R}^n$.

- By the projection theorem, the solution exists and is unique.
- The normal equation is given by

$$
W^{\top}(\mathbf{y} - W\hat{\boldsymbol{\beta}}) = 0.
$$

• If W has linear independent columns, then

$$
\hat{\boldsymbol{\beta}} = \underbrace{(W^\top W)^{-1} W^\top}_{K} \mathbf{y}.
$$

 \diamond Note that the optimal solution $\hat{\boldsymbol{\beta}}$ is related to y linearly.

Gauss-Markov Model

• A more realistic model in an experiment is

$$
\mathbf{y} = W\boldsymbol{\beta} + \boldsymbol{\epsilon}.
$$

- $\Diamond W \in \mathbb{R}^{m \times n}$ is known.
- $\phi \in \mathbb{R}^m$ is a random vector with zero mean and covariance $\mathcal{E}(\epsilon \epsilon^{\top}) = Q$.
- \Diamond y represents the outcome of inexact measurements in \mathbb{R}^m .
- Want to estimate unknown parameter vector $\boldsymbol{\beta} \in \mathbb{R}^n$ from $\mathbf{y} \in \mathbb{R}^m$ using

$$
\hat{\boldsymbol{\beta}} := K\mathbf{y}
$$

with K an unknown matrix in $R^{n \times m}$.

• Suppose the approximation is measured by minimizing the expected value of the error, i.e.,

$$
\min_{K\in\mathbb{R}^{n\times m}}\mathcal{E}[\|\hat{\boldsymbol{\beta}}-\boldsymbol{\beta}\|^2]
$$

- \diamond Since y carries random noise, it is a random vector.
- \Diamond Both estimate $\hat{\boldsymbol{\beta}}$ and the difference $\hat{\boldsymbol{\beta}} \boldsymbol{\beta}$ are random vectors.
- \Diamond The statistics of these random vectors are determined by those of ϵ and K.

Gauss-Markov Estimate

• Observe that

$$
\mathcal{E}[\|\hat{\boldsymbol{\beta}} - \boldsymbol{\beta}\|^2] = \mathcal{E}[\langle K(W\boldsymbol{\beta} + \epsilon) - \boldsymbol{\beta}, K(W\boldsymbol{\beta} + \epsilon) - \boldsymbol{\beta} \rangle] = \|KW\boldsymbol{\beta} - \boldsymbol{\beta}\|^2 + \mathcal{E}[\langle K\epsilon, K\epsilon \rangle].
$$

- Consider unbiased estimation:
	- ¦ Observe

$$
\mathcal{E}[\hat{\boldsymbol{\beta}}] = \mathcal{E}[KW\boldsymbol{\beta} + K\epsilon] = KW\mathcal{E}[\boldsymbol{\beta}].
$$

- It is expected that $KW=I_n$.
- \Diamond The problem now becomes, given a symmetric and positive definite matrix Q ,

$$
\begin{aligned}\n\text{minimize}_{K \in \mathbb{R}^{n \times m}} & \text{trace } KQK^{\top} \\
\text{subject to} & KW = I_n.\n\end{aligned}
$$

 \diamond This is in the form of a standard minimum norm problem.

- The problem has a closed form solution.
	- \diamond The optimal solution is given by

$$
K = (W^{\top} Q^{-1} W)^{-1} W^{\top} Q^{-1}.
$$

 \Diamond The minimum-variance unbiased estimation of β is given by

$$
\hat{\boldsymbol{\beta}} = \left(W^\top Q^{-1} W\right)^{-1} W^\top Q^{-1} \mathbf{y}.
$$

- \Diamond The special case $Q = I_m$ is the classical least squares problem.
	- \triangleright The classical least squares solution is providing the unbiased minimum-variance estimate of β , if the perturbation presented in data is white noise.
- It can be argued that the above solution $\hat{\beta}_i$ is the minimum-variance unbiased estimation of β_i for each individual *i*.
	- \diamond This is the true minimum-variance unbiased estimate.

Minimum-Variance Model

• Assume in the linear model

$$
\mathbf{y} = W\boldsymbol{\beta} + \boldsymbol{\epsilon}.
$$

- $\Diamond W \in \mathbb{R}^{m \times n}$ is known.
- $\phi \in \mathbb{R}^m$ is a random vector with zero mean and covariance $\mathcal{E}(\epsilon \epsilon^{\top}) = Q$.
- \Diamond β is a random vector in \mathbb{R}^n with known statistical information.
- \Diamond y represents the outcome of inexact measurements in \mathbb{R}^m .
- Want to estimate the unknown random vector $\boldsymbol{\beta} \in \mathbb{R}^n$ based on $\mathbf{y} \in \mathbb{R}^m$ using

$$
\hat{\boldsymbol{\beta}} := K\mathbf{y}
$$

where K is an unknown matrix in $R^{n \times m}$.

• The best approximation is measured by minimizing the expected value of the random error, i.e.,

$$
\min_{K\in\mathbb{R}^{n\times m}}\mathcal{E}[\|\hat{\boldsymbol{\beta}}-\boldsymbol{\beta}\|^2]
$$

Minimum-Variance Estimate

• Assume $(\mathcal{E}[\mathbf{y}\mathbf{y}^T])^{-1}$ exists. Then the minimum-variance estimator of β is given by

$$
\hat{\boldsymbol{\beta}} = \mathcal{E}[\boldsymbol{\beta} \mathbf{y}^T] (\mathcal{E}[\mathbf{y} \mathbf{y}^T])^{-1} \mathbf{y}.
$$

- \Diamond The estimate is independent of W and ϵ .
- Proof Is Interesting!
	- \diamond Write K in rows, i.e., $K = [\mathbf{k}_1^\top, \dots \mathbf{k}_n^\top]^\top$.
	- $\Diamond \mathcal{E}[\|\hat{\boldsymbol{\beta}} \boldsymbol{\beta}\|^2] = \sum_{i=1}^n \mathcal{E}[(\hat{\beta}_i \beta_i)^2] = \sum_{i=1}^n \mathcal{E}[(\mathbf{k}_i^{\top} \mathbf{y} \beta_i)^2].$ \triangleright Suffices to consider each individual term.
	- \Diamond Let $f(\mathbf{y}, \beta_i)$ denote the (unknown) joint pdf of **y** and β_i .
		- \triangleright Define

$$
g(\mathbf{k}_i) := \mathcal{E}[(\mathbf{y}^\top \mathbf{k}_i - \beta_i)^2]
$$

=
$$
\int \int (\mathbf{y}^\top \mathbf{k}_i - \beta_i)^2 f(\mathbf{y}, \beta_i) d\mathbf{y} d\beta_i.
$$

 \triangleright Necessary condition is $\nabla g(\mathbf{k}_i) = 0$.

 \diamond Easy to see

$$
\frac{\partial g}{\partial \mathbf{k}_{i,j}} = \int \int 2(\mathbf{y}^{\top} \mathbf{k}_{i} - \beta_{i}) \mathbf{y}_{j} f(\mathbf{y}, \beta_{i}) d\mathbf{y} d\beta_{i}
$$

$$
= 2\mathcal{E}[(\mathbf{y}^{\top} \mathbf{k}_{i} - \beta_{i}) \mathbf{y}_{j}].
$$

 \diamond Rewrite the necessary condition as

$$
\mathcal{E}[\mathbf{y}(\mathbf{y}^\top \mathbf{k}_i - \beta_i)] = 0, \quad \text{(for each } i)
$$

$$
\mathcal{E}[\mathbf{y}\mathbf{y}^\top]K^\top = \mathcal{E}[\mathbf{y}\beta^\top], \quad \text{(in matrix form)}
$$

$$
K = \mathcal{E}[\beta\mathbf{y}^\top] (\mathcal{E}[\mathbf{y}\mathbf{y}^\top])^{-1}.
$$

- The estimate so far is *biased*, unless $\mathcal{E}[\beta] = \mathcal{E}[\mathbf{y}] = 0$.
- In the general case where $\mathcal{E}[\beta] = \beta_0$ and $\mathcal{E}[\mathbf{y}] = \mathbf{y}_0$,
	- \diamond The estimate should assume the form

$$
\hat{\boldsymbol{\beta}} := K\mathbf{y} + \mathbf{b}.
$$

 \diamond The minimum-variance estimate is given by

$$
\hat{\boldsymbol{\beta}} = \boldsymbol{\beta}_0 + \mathcal{E}[(\boldsymbol{\beta} - \boldsymbol{\beta}_0)(\mathbf{y} - \mathbf{y}_0)^\top] (\mathcal{E}[(\mathbf{y} - \mathbf{y}_0)(\mathbf{y} - \mathbf{y}_0)^\top])^{-1}(\mathbf{y} - \mathbf{y}_0).
$$

Equivalent Formulas

 $\bullet~$ Assume that

$$
\mathcal{E}[\epsilon \epsilon^{\top}] = Q \in \mathbb{R}^{m \times m}, \n\mathcal{E}[\beta \beta^{\top}] = R \in \mathbb{R}^{n \times n}, \n\mathcal{E}[\epsilon \beta^{\top}] = 0 \in \mathbb{R}^{m \times n}.
$$

• Then the minimum-variance estimate can be written as

$$
\hat{\boldsymbol{\beta}} = \underbrace{RW^{\top} (WRW^{\top} + Q)^{-1}}_{K} \mathbf{y}
$$
\n
$$
= \underbrace{(W^{\top} Q^{-1}W + R^{-1})^{-1}W^{\top} Q^{-1}}_{*} \mathbf{y}.
$$

- \diamond The equivalence can be proved by direct substitution.
- \diamond Check out the dimension of the inverse matrices involved in the two expressions.

Comparision with Gauss-Markov Estimate

• The Gauss-Markov estimate is

$$
\hat{\boldsymbol{\beta}} = \left(W^{\top} Q^{-1} W\right)^{-1} W^{\top} Q^{-1} \mathbf{y}.
$$

• The more subtle minimum-variance estimate is

$$
\hat{\boldsymbol{\beta}} = (W^{\top} Q^{-1} W + R^{-1})^{-1} W^{\top} Q^{-1} \mathbf{y}.
$$

- If $R^{-1} = 0$, the two estimates are idential.
	- \Diamond What is meant by $R^{-1} = 0$?
	- \Diamond Infinite variance of β in the more subtle estimate means that we have absolutely no a priori knowledge of β at all.
- When β is considered as a random variable, the size m of observations y does not need to be large.
	- $\Diamond (WRW^{\top} + Q)^{-1}$ exists so long as Q is positive positive definite.
	- \Diamond Every new measurement simply provides additional information which may modify the original estimate.

Application to Adaptic Optics

- Imaging through the Atmosphere
- Adaptive Optics System
	- \diamond Basic Relationships
	- ¦ Open-loop Model
	- \diamond Closed-loop Model
- Adaptive Optics Control
	- \diamond An Ideal Control
	- \diamond An Inverse Problem
	- \diamond Temporary Latency
- Numerical Illustration

Atmospheric Imaging Computation

• Purpose:

- \Diamond To compensate for the degradation of astronomical image quality caused by the effects of atmospheric turbulence.
- Two stages of approach:
	- \Diamond Partially nullify optical distortions by a deformable mirror (DM) operated from a closed-loop adaptive optics (AO) system.
	- ¦ Minimize noise or blur via off-line post-processing deconvolution techniques (not this talk).
- Challenges:
	- ¦ Atmospheric turbulence can only be measured adaptively.
	- \Diamond Need theory to pass atmospheric measurements to knowledge of actuating the DM.
	- ¦ Require fast performance of large-scale data processing and computations.

A Simplified AO System

Basic Notation

- Three quantities:
	- $\phi(t)$ = turbulence-induced phase profile at time t.
	- ϕ a(t) = deformable mirror (DM) actuator command at time t.
	- ∞ s(t) = wavefront slope sensor (WFS) measurement at time t and with no correction.
- Two transformations:
	- δ H := transformation from actuator commands to resulting phase profile adjustments.
	- $\Diamond G :=$ transformation from actuator commands to slope sensor measurement adjustments.

From Actuator to DM Surface

- \bullet H is used to describe the DM surface change due to the application of actuators.
- $r_i(\vec{x}) =$ influence function on the DM surface at position \vec{x} with an unit adjustment to the ith actuator.
- Assuming m actuators and linear response of actuators to the command, model the DM surface by

$$
\hat{\phi}(\vec{x},t) = \sum_{i=1}^{m} a_i(t) r_i(\vec{x}).
$$

 \Diamond Sampled at n DM surface positions, can write

$$
\hat{\phi}(t) = Ha(t)
$$

 $\triangleright H = (r_i(\vec{x}_j)) \in R^{n \times m}.$ $\triangleright \hat{\phi}(t) = [\hat{\phi}(\vec{x}_1, t), \dots, \hat{\phi}(\vec{x}_n, t)]^T \in R^n = \text{discrete corrected phase profile at time } t.$

From Actuator to WFS Measurement

- \bullet G is used to describe the WFS slope measurement associated with the actuator command \overline{a} .
- Consider the H-WFS model where

$$
s_j(t) := -\int d\vec{x}(\nabla W_j(\vec{x})\phi(\vec{x},t), \quad j=1,\ldots,\ell.
$$

- \diamond W_j = given specifications of $j\text{th}$ subaperture.
- The measurement corresponding to $\hat{\phi}(\vec{x},t)$ would be

$$
\hat{s}_j(t) = \sum_{i=1}^m \underbrace{\left(-\int d\vec{x}(\nabla W_j(\vec{x})r_i(\vec{x})\right)}_{G_{ji}} a_i(t).
$$

 \diamond Can write

$$
\hat{s}(t) = Ga(t)
$$

where $G = [G_{ij}] \in R^{\ell \times m}$.

 \Diamond The DM actuators are *not* capable of producing the exact wavefront phase $\phi(\vec{x},t)$ due to its finiteness of degrees of freedom. So $\hat{s} = Ga$ is not an exact measurement.

A Closed-loop AO Control Model

Adaptive Optics 123

What is Available?

- Two residuals that are available in a *closed-loop* AO system:
	- $\Diamond \ \Delta \phi(t) := \phi(t) Ha(t)$
		- \triangleright Represents the residual phase error remaining after the AO correction.
		- \triangleright Also means instantaneous closed-loop wavefront distortion at time t.
	- $\Diamond \Delta s(t) := s(t) Ga(t)$
		- \triangleright Represents feedback applied to $s(t)$ by DM actuator adjustment.
		- \triangleright Also means *observable* wavefront sensor measurement at time $t.$
- In practice, there is a servo lag or delay in time Δt , i.e., it is likely

$$
\diamond \Delta \phi(t) := \phi(t) - Ha(t - \Delta t).
$$

 $\Diamond \Delta s(t) := s(t) - Ga(t - \Delta t).$

Thus the data collected are not perfect.

Open-loop Model

• Assume a linear relationship between open-loop WFS measurement s and turbulenceinduced phase profile ϕ :

$$
s = W\phi + \epsilon. \tag{1}
$$

- \circ ϵ = measurement noise with mean zero.
- \Diamond In the H-WFS model, W represents a quadrature of the integral operator evaluated at designated positions $\vec{x}_j, j = 1, \ldots n$.
- Want to estimate ϕ using $\tilde{\phi}$ from the model

$$
\tilde{\phi} = E_{open} s
$$

so that the variance

$$
\mathcal{E}[\|\phi-\tilde{\phi}\|^2]
$$

is minimized.

 \diamond The wave front reconstruction matrix E_{open} is given by

$$
E_{open} = \mathcal{E}[\phi s^T] (\mathcal{E}[ss^T])^{-1}.
$$

 \Diamond For unbiased estimation, need to enforce the condition that $E_{open}W = I$.

Closed-loop Model

• For the H-WFS model, it is reasonable to assume the relationship

$$
WH = G.\t\t(2)
$$

• Then

$$
s = W\phi + \epsilon
$$

= $W(Ha + \Delta\phi) + \epsilon$
= $WHa + (W\Delta\phi + \epsilon)$.

It follows that

$$
\Delta s = W \Delta \phi + \epsilon. \tag{3}
$$

 \Diamond The closed-loop relationship (3) is identical to the open-loop relationship (1).

• Can estimate the residual phase error $\Delta\phi(t)$ using $\Delta\tilde{\phi}(t)$ from the model

$$
\Delta\tilde{\phi}=E_{closed}\Delta s
$$

 $\diamond~ E_{closed} =$ wavefront reconstruction matrix.

 \diamond For unbiased estimation, it requires that $E_{closed}W = I.$ Hence

$$
E_{closed}G = e_{closed}(WH) = H.
$$

Actuator Control

- An Ideal Control:
	- $\Diamond \Delta \phi$ = residual error after DM correction by current command a_c .
	- \diamond New command a_+ should reduce the residual error, i.e., want to

$$
\min_a \|Ha - \phi\|.
$$

 \Diamond Define $\Delta a := a_+ - a_c$, then want to

$$
\min_{\Delta a} \|H\Delta a - \Delta \phi\|.
$$

 \Diamond But $\Delta\phi$ is not observable directly. It has to be estimated from Δs .

• Estimating Δa directly from Δs :

$$
\Delta a = M \Delta s \tag{4}
$$

An Inverse Problem

Actuator Control with Temporary Latency

- Due to finite bandwidth of the control loop, Δs is not immediately available.
- Time line for the scenario of a 2-cycle delay,

• ARMA control scheme:

$$
a(t + 2\Delta t) := \sum_{k=0}^{p} c_k a(t + (1 - k)\Delta t)
$$

$$
+ \sum_{j=0}^{q} b_j M_j \Delta s(t - j\Delta t).
$$

$$
a^{(r+2)} = \sum_{k=0}^{p} c_k a^{(r+1-k)} + \sum_{j=0}^{q} b_j M_j \Delta s^{(r-j)}, r = 0, 1, \dots
$$

Expected Effect on the AO System

• Suppose

- ∞ exp[s(t)] is independent of time t throughout the cycle of computation.
- \Diamond Matrix $\sum_{j=0}^{q} b_j M_j$ is of full column rank.
- Then
	- \diamond The WFS feedback measurement $\Delta s^{(n)}$ is eventually nullified by the actuators, i.e.,

$$
\exp[s] = G \lim_{n \to \infty} \exp[a^{(n)}].
$$

 \Diamond The expected residual phase error is inversely related to the expected WFS measurement noise ϵ via

$$
0 = W \lim_{n \to \infty} \exp[\Delta \phi^{(n)}] + \exp[\epsilon].
$$

- Compare with the ideal control:
	- \Diamond Even if $\exp[\epsilon] = 0$, not necessarily $\exp[\|\lim_{n\to\infty} \Delta\phi_n\|^2]$ will be small because W has non-trivial null space.

Almost Sure Convergence

- Each control $a^{(r+j)}$ is a random variable \Longrightarrow The control scheme is a stochastic process.
- Each control $A^{(r+j)}$ is also a realization of the corresponding random variable \implies The control scheme is a deterministic iteration.
- Convergence of deterministic iteration on independent random samples \Longrightarrow Almost sure convergence of stochastic process.
- Need fast convergence:
	- \diamond Stationary statistic is not realistic.
	- ¦ Atmospheric turbulence changes rapidly.
	- \diamond Can only assume stationary statistic for a short period of time.

Adaptive Optics 131

 $\bullet\,$ Define

$$
\mathbf{a}_{r+2} := [a^{(r+2)}, a^{(r+1)}, \dots a^{(r-q+1)}]^T, \quad r = 0, 1, \dots
$$

$$
\mathbf{b} := [\sum_{j=0}^q b_j M_j G s', 0, \dots, 0]^T.
$$

• The ARMA scheme becomes

$$
\mathbf{a}_{r+2} = A\mathbf{a}_{r+1} + \mathbf{b}
$$

where A is the $m(q+2)\times m(q+2)$ matrix

$$
A := \begin{bmatrix} c_0 I_m & c_1 I_m - b_0 M_1 G & \dots & c_{q+1} I_m - b_q M_q G \\ I_m & 0 & 0 \\ 0 & I_m & & & \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & I_m & 0 \end{bmatrix}
$$

- Almost convergence \Longleftrightarrow Spectral radius $\rho(A)$ of A is less than one.
- \bullet Asymptotic convergence factor is precisely $\rho(A).$

Numerical Simulation

 $\bullet\,$ Consider the 2-cycle delay scheme

$$
a(t + 2\Delta t) = a(t + \Delta t) + 0.6H^{\dagger}W^{\dagger}\Delta s(t).
$$

• Test data:

 $\bullet\,$ Random samples:

$$
\begin{array}{rcl}\n\phi & = & \mu_{\phi} * ones(1, z) + L_{\phi} * randn(n, z), \\
\epsilon & = & \mu_{\epsilon} * ones(1, z) + L_{\epsilon} * randn(\ell, z).\n\end{array}
$$