Chapter 5

Optimization of Functionals

There are optimization problem that cannot be formulated as minimum norm problems. This chapter discusses the theory and geometry of the more general problems.

- 1. The concepts of differentials, gradients, and so on can be generalized to normed spaces.
- 2. Variational theory of optimization is much in parallel to the familiar theory in finite dimensions.

Topics to be discussed include:

- Differentials
- Extrema
- Euler-Lagrange Equations

Differentials

There are several ways to introduce the notion of derivative in normed spaces.

- Gateaux derivative
- Frèchet derivatie

Gauteaux Differential

- Let $T: D \longrightarrow Y$ be a mapping where $D \subset X$, X is a vector space, and Y is a normed space. Given $\mathbf{x} \in D$ and $\mathbf{h} \in X$,
 - $\diamond\,$ The limit

$$\delta T(\mathbf{x}; \mathbf{h}) = \lim_{\alpha \to 0} \frac{T(\mathbf{x} + \alpha \mathbf{h}) - T(\mathbf{x})}{\alpha},$$

if exists, is called the Gateaux differential of T at \mathbf{x} with increment \mathbf{h} .

- ▷ If $\delta T(\mathbf{x}; \mathbf{h})$ exists for each $\mathbf{h} \in X$, the mapping T is said to be Gateaux differentiable at \mathbf{x} .
- The limit is takin in the normed space Y.
- The Gauteaux differential is analogous to the directional derivative in that if $f : \mathbb{R}^n \longrightarrow \mathbb{R}$ is continuously differentiable, then

$$\delta f(\mathbf{x}; \mathbf{h}) = \sum_{i=1}^{n} \frac{\partial f}{\partial x_i} h_i = \langle \mathbf{h}, \nabla f(\mathbf{x}) \rangle.$$

• For each fixed $\mathbf{x} \in D$, $\delta T(\mathbf{x}; \cdot) : X \longrightarrow Y$ is a linear map in **h**.

Fréchet Differential

• Let $T: D \longrightarrow Y$ be a mapping where $D \subset X$ is an open domain and X, Y are normed spaces. Given $\mathbf{x} \in D$, if for each $\mathbf{h} \in X$, the Gauteaux differential $\delta T(\mathbf{x}; \mathbf{h})$ exists, is continuous, and satisfies

$$\lim_{\|\mathbf{h}\| \to 0} \frac{\|T(x+h) - T(x) - \delta T(\mathbf{x}; \mathbf{h})\|}{\|\mathbf{h}\|} = 0,$$

then T is said to be Frèchet differentiable at \mathbf{x} .

♦ At a fixed point $\mathbf{x} \in D$, the bounded linear operator $A_{\mathbf{x}} \in B(X, Y)$ such that

$$A_{\mathbf{x}}\mathbf{h} = \delta T(\mathbf{x};\mathbf{h})$$

is called the Fréchet derivative of T at \mathbf{x} and is denoted as $T'(\mathbf{x})$.

- The mapping from X to B(X, Y) via $\mathbf{x} \mapsto T'(\mathbf{x})$ is called the *Fréchet derivative* of T.
- If T is a functional, then $T'(\mathbf{x}) \in X^*$ is called the *gradient* of T at \mathbf{x} .
- Much of the theory of ordinary derivatives, including the implicit function theorem and the Taylor series expansion, can be generalized to Fréchet derivatives. (How?)

- Some examples:
 - \diamond If $f : \mathbb{R}^n \longrightarrow \mathbb{R}^m$, then

$$f'(\mathbf{x}) = \left[\frac{\partial f_i(\mathbf{x})}{\partial x_j}\right]$$

where the Jacobian matrix acts like the matrix representation of the linear operator. (Recall how the dual space is represented!)

 $\diamond~ \mbox{Suppose}~ I: C[0,1] \longrightarrow \mathbb{R}$ is defined by

$$I(f) = \int_0^1 g(f(t), t) dt,$$

where $g: \mathbb{R} \times \mathbb{R} \longrightarrow \mathbb{R}$ and $\frac{\partial g}{\partial x}$ exists. Then the action of I'(f) on $h(t) \in C[0, 1]$ is given by

$$I'(f)h(t) = \int_0^1 \frac{\partial g(f(t), t)}{\partial x} h(t) dt.$$

 \triangleright May we say that

$$\nabla I(f) = \frac{\partial g(f(t), t)}{\partial x}?$$

• Recall that the dual space of C[0, 1] is identified with NBV[0, 1].

Conditions at Extrema

- Using the norm to define a neighborhood N of a given point \mathbf{x}_0 in a normed space, \mathbf{x}_0 is said to be a *relative minimum* of a functional f on a subset Ω if $f(\mathbf{x}_0) \leq f(\mathbf{x})$ for all $\mathbf{x} \in \Omega \bigcap N$.
- Suppose the real-valued functional f is Gauteaux differentiable at \mathbf{x}_0 in a normed space. A necessary condition for f to have extremum at \mathbf{x}_0 is that

$$\delta f(\mathbf{x}_0; \mathbf{h}) = 0$$

for all $\mathbf{h} \in X$.

♦ Simple consequence by the ordinary calculus, but significant impact.

Euler-Lagurange Equations

The Euler-Lagurange equation is

- A direct result of differential calculus applied to the settings of functions.
- The equation usually ends up with a differential equation that needs to be solved further.

Fixed-end Problem

• Find a function x(t) over the interval $[t_1, t_2]$ that minimizes the integral functional

$$J(x) = \int_{t_1}^{t_2} f(x(t), \dot{x}(t), t) dt$$

where f is continuous and has continuous partial derivatives with respect to x and \dot{x} .

- ♦ We must agree on the class $D[t_1, t_2]$ of functions within which we seek the optimal values the so called *admissible set*. (What class of functions should be considered?)
- \diamond One version is to assume that $x(t_1)$ and $x(t_2)$ are fixed.
 - \triangleright Given x(t) admissible, if x(t) + h(t) is also admissible, then $h(t_1) = h(t_2) = 0$.
- The necessary condition for the extremum is that for all h,

$$\begin{split} \delta J(x;h) &= \int_{t_1}^{t_2} \left(f_x(x,\dot{x},t)h(t) + f_{\dot{x}}(x,\dot{x},t)\dot{h}(t) \right) dt \\ &= \int_{t_1}^{t_2} \left(f_x(x,\dot{x},t) - \frac{d}{dt} f_{\dot{x}}(x,\dot{x},t) \right) h(t) dt + f_{\dot{x}}(x,\dot{x},t)h(t)|_{t_1}^{t_2} = 0. \end{split}$$

 \diamond To use the integration by parts, ... we have to assume that $\frac{d}{dt}f_{\dot{x}}$ is continuous.

• If $\alpha(t)$ and $\beta(t)$ are continuous in $[t_1, t_2]$ and

$$\int_{t_1}^{t_2} \left(\alpha(t)h(t) + \beta(t)\dot{h}(t) \right) dt = 0$$

for every $h \in D[t_1, t_2]$ with $h(t_1) = h(t_2) = 0$, then β is differentiable and $\dot{\beta}(t) = \alpha(t)$ in $[t_1, t_2].$

♦ Define $\gamma(t) := \int_{t_1}^t \alpha(\tau) d\tau$, then

$$\int_{t_1}^{t_2} \left(\alpha(t)h(t) + \beta(t)\dot{h}(t) \right) dt = -\int_{t_1}^{t_2} \underbrace{\left(\gamma(t) + \beta(t) \right)}_{\eta(t)} \dot{h}(t) dt.$$

 $\diamond \ \eta(t) \equiv c.$

- \triangleright Let c be the average value of $\eta(t)$ over $[t_1, t_2]$.
- ▷ Define $k(t) := \int_{t_1}^t (\eta(\tau) c) d\tau$ (as a special $h \in D[t_1, t_2]$. ▷ Observe that

$$\int_{t_1}^{t_2} \left(\eta(t) - c\right)^2 d\tau = \int_{t_1}^{t_2} \left(\eta(t) - c\right) \dot{k}(t) dt = \int_{t_1}^{t_2} \eta(t) \dot{k}(t) dt - c[h(t_2) - h(t_1)] = 0.$$

- $\diamond \ \beta(t) = \gamma(t) + c \text{ is differentiable.}$
- At the extremum point, x(t) must satisfy the Euler-Lagrange equation

$$f_x(x, \dot{x}, t) = \frac{d}{dt} f_{\dot{x}}(x, \dot{x}, t).$$

Examples

• Assumptions:

- \diamond That a retired professor has no income other than that obtained from his fixed quantity of savings S. (Oh, that is how the government treats us!)
- \diamond That his rate of enjoyment at a given time is U(r(t)) where r(t) is his rate of expenditure. (Uhmmm, life is more than just material things!)
- ♦ That the true sense of enjoyment is degraded in time as $e^{-\beta t}U(r(t))$. (Alas, money cannot buy all the joy!)
- \diamond That the current capital x(t) at time t generates an investment interest $\alpha x(t)$. (So this is the only bright thing in this scenario!)
- \diamond That the man knows exactly that he will live for a period of time [0, T] when he begins to withdraw his savings. (Attention! Do not think that you can make this prediction!)
- Objective:

Maximize
$$\int_0^T e^{-\beta t} U(r(t)) dt$$
Subject to $x(0) = S$, $x(T) = 0$,

whereas

$$\dot{x}(t) = \alpha x(t) - r(t).$$

♦ What is the lifetime plan of investment and expenditure that maximize the total enjoyment? • Optimal solution x(t) must satisfy:

$$\alpha e^{-\beta t}U'(\alpha x(t) - \dot{x}(t)) + \frac{d}{dt}e^{-\beta t}U'(\alpha x(t) - \dot{x}(t)) = 0.$$

 $\diamond\,$ Equivalently,

$$\frac{d}{dt}U'(r(t)) = (\beta - \alpha)U'(r(t)),$$

$$U'(r(t)) = U'(r(0))e^{(\beta - \alpha)t}.$$

♦ Once U is specified, x(t) and hence r(t) can be completely characterized from the boundary conditions x(0) = x(T) = 0.

Equality Constrained Problems

- Fixed-end problems are a kind of constrained problem. Since these kinds of constrained are explicitly described, they can be embedded in the space of admissible solutions.
- For implicitly defined constraints, the theory of Lagrange multiplier is quite useful.

Minimize $f(\mathbf{x})$, Subject to $g_i(\mathbf{x}) = 0$, $i = 1, \dots, n$.

- ◇ Recall that there is a geometric meaning of the Lagrange multiplier in finite dimensional space. Such a concept needs to be generalized in normed vector space.
- \diamond The Lagrange multiplier theory usually ends up with a new functional whose stationary points can be found by the Euler-Lagrange equation.

Notion of Tangent in Normed Space

• Assume

- ♦ That \mathbf{x}_0 is an extremum of the functional f subject to the functional constraints $g(\mathbf{x}) = 0, i = 1, ..., n.$
- \diamond That the linear functionals $g'_1(\mathbf{x}_0), \ldots, g'_n(\mathbf{x}_0)$ are linear independent.
- Then

$$\delta g_i(\mathbf{x}_0; \mathbf{h}) = 0, \quad i = 1, \dots, n \Rightarrow \delta f(\mathbf{x}_0; \mathbf{h}) = 0.$$

 \diamond Note that the concept of tangent is built in the notion of Gateaux differential of g_i at \mathbf{x}_0 with arbitrary increment \mathbf{h} .

- Here is the proof!
 - \diamond There exist *n* linearly independent vectors $\mathbf{y}_1, \ldots, \mathbf{y}_n \in X$, such that the matrix

$$M := [\delta g_i(\mathbf{x}_0; \mathbf{y}_j)]$$

is nonsingular.

 $\diamond\,$ Consider the system of equations from ${\bf R}\times {\bf R}^n\to {\bf R}^n$ defined by

$$g_1(\mathbf{x}_0 + \alpha \mathbf{h} + \sum_{i=1}^n \beta_i \mathbf{y}_i) = 0,$$

$$g_2(\mathbf{x}_0 + \alpha \mathbf{h} + \sum_{i=1}^n \beta_i \mathbf{y}_i) = 0,$$

$$\vdots$$

$$g_n(\mathbf{x}_0 + \alpha \mathbf{h} + \sum_{i=1}^n \beta_i \mathbf{y}_i) = 0,$$

for variables $(\alpha, \beta_1, \ldots, \beta_n)$.

 $\diamond\,$ With a little bit abuse of the notation, the Jacobian

$$\left[\frac{\partial g_i}{\partial \beta_j}\right]_{\alpha=0,\boldsymbol{\beta}=\boldsymbol{0}} = M.$$

is nonsingular.

- $\diamond\,$ The implicit function theorem (in $\mathbb{R}^n)$ kicks in.
 - \triangleright There exists a function $\beta(\alpha)$ in the neighborhood of $\alpha = 0$ such

$$0 = g_i(\mathbf{x}_0 + \alpha \mathbf{h} + \sum_{j=1}^n \beta_j(\alpha) \mathbf{y}_j)$$

=
$$\underbrace{g_i(\mathbf{x}_0) + \alpha \delta g_i(\mathbf{x}_0; \mathbf{h})}_{0} + \underbrace{\delta g_i(\mathbf{x}_0; \sum_{j=1}^n \beta_j(\alpha) \mathbf{y}_j)}_{M \boldsymbol{\beta}(\alpha)} + o(\|\sum_{j=1}^n \beta_j(\alpha) \mathbf{y}_j)\|).$$

 \triangleright But

$$M\boldsymbol{\beta}(\alpha) = O(\|\sum_{j=1}^n \beta_j(\alpha)\mathbf{y}_j)\|) \Rightarrow \|\sum_{j=1}^n \beta_j(\alpha)\mathbf{y}_j)\| = o(\alpha).$$

♦ Along the one-parameter curve $\mathbf{x}_0 + \alpha \mathbf{h} + \sum_{j=1}^n \beta_j(\alpha) \mathbf{y}_j$, the functional f assume the extremum at \mathbf{x}_0 . So

$$\frac{d}{d\alpha}f(\mathbf{x}_0 + \alpha \mathbf{h} + \sum_{j=1}^n \beta_j(\alpha)\mathbf{y}_j)|_{\alpha=0} = 0.$$

 \diamond The above derivative is precisely $\delta f(\mathbf{x}_0; \mathbf{h}) = 0$.

Lagrange Multiplier

• Let g_1, \ldots, g_n be linear independent linear functionals on a vector space X. Let f be another linear functional on X such that for every $x \in X$ satisfying $g_i(x) = 0, i = 1, \ldots, n$, we always have f(x) = 0. Show that there are constants $\lambda_1, \ldots, \lambda_n$ such that

$$f = \sum_{i=1}^{n} \lambda_i g_i.$$

• Assume that

- ♦ The point \mathbf{x}_0 is an extremum of the functional f subject to the constraints $g_i(\mathbf{x}) = 0$, i = 1, ..., n.
- \diamond The linear functionals $g'_1(\mathbf{x}_0), \ldots, g'_n(\mathbf{x}_0)$ are linear independent.

Then there exists constants $\lambda_1, \ldots, \lambda_n$ such that

$$\delta f(\mathbf{x}_0; \mathbf{h}) + \sum_{j=1}^n \lambda_j \delta g_j(\mathbf{x}_0; \mathbf{h}) = 0$$

for every $\mathbf{h} \in X$.

Isometric Problem

- Find the curve with length ℓ and end points (-1, 0) and (1, 0) so that it encloses maximum area between the curve and the x-axis.
- Mathematical model:

Maximize
$$\int_{-1}^{1} y(x) dx,$$

Subject to
$$\int_{-1}^{1} \sqrt{1 + (y'(x))^2} dx = \ell,$$

$$y(-1) = y(1) = 0.$$

• By the Lagrange multiplier,

$$\delta J(y;h) = 0$$

for every admissible h where the functional J is defined by

$$J(y) = \int_{-1}^{1} (y + \lambda \sqrt{1 + (y'(x))^2}) dx.$$

• Apply the Euler-Lagrange equation,

$$1 - \lambda \frac{d}{dx} \frac{y'(x)}{\sqrt{1 + (y'(x))^2}} = 0.$$

 $\diamond\,$ Show that the solution is the arc of a circle.