
Chapter 5

Optimization of Functionals

There are optimization problem that cannot be formulated as minimum norm problems. This
chapter discusses the theory and geometry of the more general problems.

1. The concepts of differentials, gradients, and so on can be generalized to normed spaces.

2. Variational theory of optimization is much in parallel to the familiar theory in finite
dimensions.

Topics to be discussed include:

• Differentials

• Extrema

• Euler-Lagrange Equations
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Differentials

There are several ways to introduce the notion of derivative in normed spaces.

• Gateaux derivative

• Frèchet derivatie
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Gauteaux Differential

• Let T : D −→ Y be a mapping where D ⊂ X, X is a vector space, and Y is a normed
space. Given x ∈ D and h ∈ X,

¦ The limit

δT (x;h) = lim
α→0

T (x + αh)− T (x)

α
,

if exists, is called the Gateaux differential of T at x with increment h.

. If δT (x;h) exists for each h ∈ X, the mapping T is said to be Gateaux differ-
entiable at x.

• The limit is takin in the normed space Y .

• The Gauteaux differential is analogous to the directional derivative in that if f : Rn −→ R
is continuously differentiable, then

δf(x;h) =
n∑

i=1

∂f

∂xi

hi = 〈h,∇f(x)〉.

• For each fixed x ∈ D, δT (x; ·) : X −→ Y is a linear map in h.
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Fréchet Differential

• Let T : D −→ Y be a mapping where D ⊂ X is an open domain and X,Y are normed
spaces. Given x ∈ D, if for each h ∈ X, the Gauteaux differential δT (x;h) exists, is
continuous, and satisfies

lim
‖h‖→0

‖T (x+ h)− T (x)− δT (x;h)‖

‖h‖
= 0,

then T is said to be Frèchet differentiable at x.

¦ At a fixed point x ∈ D, the bounded linear operator Ax ∈ B(X,Y ) such that

Axh = δT (x;h)

is called the Fréchet derivative of T at x and is denoted as T ′(x).

• The mapping from X to B(X,Y ) via x 7→ T ′(x) is called the Fréchet derivative of T .

• If T is a functional, then T ′(x) ∈ X∗ is called the gradient of T at x.

• Much of the theory of ordinary derivatives, including the implicit function theorem and
the Taylor series expansion, can be generalized to Fréchet derivatives. (How?)
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• Some examples:

¦ If f : Rn −→ Rm, then

f ′(x) =

[
∂fi(x)

∂xj

]

where the Jacobian matrix acts like the matrix representation of the linear operator.
(Recall how the dual space is represented!)

¦ Suppose I : C[0, 1] −→ R is defined by

I(f) =

∫ 1

0

g(f(t), t)dt,

where g : R × R −→ R and ∂g

∂x
exists. Then the action of I ′(f) on h(t) ∈ C[0, 1] is

given by

I ′(f)h(t) =

∫ 1

0

∂g(f(t), t)

∂x
h(t)dt.

. May we say that

∇I(f) =
∂g(f(t), t)

∂x
?

· Recall that the dual space of C[0, 1] is identified with NBV [0, 1].
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Conditions at Extrema

• Using the norm to define a neighborhood N of a given point x0 in a normed space, x0

is said to be a relative minimum of a functional f on a subset Ω if f(x0) ≤ f(x) for all
x ∈ Ω

⋂
N .

• Suppose the real-valued functional f is Gauteaux differentiable at x0 in a normed space.
A necessary condition for f to have extremum at x0 is that

δf(x0;h) = 0

for all h ∈ X.

¦ Simple consequence by the ordinary calculus, but significant impact.
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Euler-Lagurange Equations

The Euler-Lagurange equation is

• A direct result of differential calculus applied to the settings of functions.

• The equation usually ends up with a differential equation that needs to be solved further.
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Fixed-end Problem

• Find a function x(t) over the interval [t1, t2] that minimizes the integral functional

J(x) =

∫ t2

t1

f(x(t), ẋ(t), t)dt

where f is continuous and has continuous partial derivatives with respect to x and ẋ.

¦ We must agree on the class D[t1, t2] of functions within which we seek the optimal
values — the so called admissible set. (What class of functions should be consid-
ered?)

¦ One version is to assume that x(t1) and x(t2) are fixed.

. Given x(t) admissible, if x(t) + h(t) is also admissible, then h(t1) = h(t2) = 0.

• The necessary condition for the extremum is that for all h,

δJ(x;h) =

∫ t2

t1

(

fx(x, ẋ, t)h(t) + fẋ(x, ẋ, t)ḣ(t)
)

dt

=

∫ t2

t1

(

fx(x, ẋ, t)−
d

dt
fẋ(x, ẋ, t)

)

h(t)dt+ fẋ(x, ẋ, t)h(t)|
t2
t1
= 0.

¦ To use the integration by parts, ... we have to assume that d
dt
fẋ is continuous.
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• If α(t) and β(t) are continuous in [t1, t2] and

∫ t2

t1

(

α(t)h(t) + β(t)ḣ(t)
)

dt = 0

for every h ∈ D[t1, t2] with h(t1) = h(t2) = 0, then β is differentiable and β̇(t) = α(t) in
[t1, t2].

¦ Define γ(t) :=
∫ t

t1
α(τ)dτ , then

∫ t2

t1

(

α(t)h(t) + β(t)ḣ(t)
)

dt = −

∫ t2

t1

(γ(t) + β(t))
︸ ︷︷ ︸

η(t)

ḣ(t)dt.

¦ η(t) ≡ c.

. Let c be the average value of η(t) over [t1, t2].

. Define k(t) :=
∫ t

t1
(η(τ)− c) dτ (as a special h ∈ D[t1, t2].

. Observe that
∫ t2

t1

(η(t)− c)2 dτ =

∫ t2

t1

(η(t)− c) k̇(t)dt =

∫ t2

t1

η(t)k̇(t)dt−c[h(t2)−h(t1)] = 0.

¦ β(t) = γ(t) + c is differentiable.

• At the extremum point, x(t) must satisfy the Euler-Lagrange equation

fx(x, ẋ, t) =
d

dt
fẋ(x, ẋ, t).
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Examples

• Assumptions:

¦ That a retired professor has no income other than that obtained from his fixed
quantity of savings S. (Oh, that is how the government treats us!)

¦ That his rate of enjoyment at a given time is U(r(t)) where r(t) is his rate of
expenditure. (Uhmmm, life is more than just material things!)

¦ That the true sense of enjoyment is degraded in time as e−βtU(r(t)). (Alas, money
cannot buy all the joy!)

¦ That the current capital x(t) at time t generates an investment interest αx(t). (So
this is the only bright thing in this scenario!)

¦ That the man knows exactly that he will live for a period of time [0, T ] when he
begins to withdraw his savings. (Attention! Do not think that you can make this
prediction!)

• Objective:

Maximize

∫ T

0

e−βtU(r(t))dt

Subject to x(0) = S, x(T ) = 0,

whereas
ẋ(t) = αx(t)− r(t).

¦ What is the lifetime plan of investment and expenditure that maximize the total
enjoyment?
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• Optimal solution x(t) must satisfy:

αe−βtU ′(αx(t)− ẋ(t)) +
d

dt
e−βtU ′(αx(t)− ẋ(t)) = 0.

¦ Equivalently,

d

dt
U ′(r(t)) = (β − α)U ′(r(t)),

U ′(r(t)) = U ′(r(0))e(β−α)t.

¦ Once U is specified, x(t) and hence r(t) can be completely characterized from the
boundary conditions x(0) = x(T ) = 0.
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Equality Constrained Problems

• Fixed-end problems are a kind of constrained problem. Since these kinds of constrained
are explicitly described, they can be embedded in the space of admissible solutions.

• For implicitly defined constraints, the theory of Lagrange multiplier is quite useful.

Minimize f(x),

Subject to gi(x) = 0, i = 1, . . . , n.

¦ Recall that there is a geometric meaning of the Lagrange multiplier in finite dimen-
sional space. Such a concept needs to be generalized in normed vector space.

¦ The Lagrange multiplier theory usually ends up with a new functional whose sta-
tionary points can be found by the Euler-Lagrange equation.
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Notion of Tangent in Normed Space

• Assume

¦ That x0 is an extremum of the functional f subject to the functional constraints
g(x) = 0, i = 1, . . . n.

¦ That the linear functionals g′1(x0), . . . , g
′
n(x0) are linear independent.

• Then
δgi(x0;h) = 0, i = 1, . . . , n⇒ δf(x0;h) = 0.

¦ Note that the concept of tangent is built in the notion of Gateaux differential of gi
at x0 with arbitrary increment h.
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• Here is the proof!

¦ There exist n linearly independent vectors y1, . . . ,yn ∈ X, such that the matrix

M := [δgi(x0;yj)]

is nonsingular.

¦ Consider the system of equations from R×Rn → Rn defined by

g1(x0 + αh +
n∑

i=1

βiyi) = 0,

g2(x0 + αh +
n∑

i=1

βiyi) = 0,

...

gn(x0 + αh +
n∑

i=1

βiyi) = 0,

for variables (α, β1, . . . βn).

¦ With a little bit abuse of the notation, the Jacobian

[
∂gi

∂βj

∣
∣
∣
∣
α=0,β=0

= M.

is nonsingular.
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¦ The implicit function theorem (in Rn) kicks in.

. There exists a function β(α) in the neighborhood of α = 0 such

0 = gi(x0 + αh +
n∑

j=1

βj(α)yj)

= gi(x0) + αδgi(x0;h)
︸ ︷︷ ︸

0

+ δgi(x0;
n∑

j=1

βj(α)yj)

︸ ︷︷ ︸

Mβ(α)

+o(α) + o(‖
n∑

j=1

βj(α)yj)‖).

. But

Mβ(α) = O(‖
n∑

j=1

βj(α)yj)‖)⇒ ‖

n∑

j=1

βj(α)yj)‖ = o(α).

¦ Along the one-parameter curve x0 + αh +
∑n

j=1 βj(α)yj, the functional f assume
the extremum at x0. So

d

dα
f(x0 + αh +

n∑

j=1

βj(α)yj)|α=0 = 0.

¦ The above derivative is precisely δf(x0;h) = 0.
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Lagrange Multiplier

• Let g1, . . . , gn be linear independent linear functionals on a vector space X. Let f be
another linear functional onX such that for every x ∈ X satisfying gi(x) = 0, i = 1, . . . , n,
we always have f(x) = 0. Show that there are constants λ1, . . . , λn such that

f =
n∑

i=1

λigi.

• Assume that

¦ The point x0 is an extremum of the functional f subject to the constraints gi(x) = 0,
i = 1, . . . , n.

¦ The linear functionals g′1(x0), . . . , g
′
n(x0) are linear independent.

Then there exists constants λ1, . . . , λn such that

δf(x0;h) +
n∑

j=1

λjδgj(x0;h) = 0

for every h ∈ X.
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Isometric Problem

• Find the curve with length ` and end points (−1, 0) and (1, 0) so that it encloses maximum
area between the curve and the x-axis.

• Mathematical model:

Maximize

∫ 1

−1

y(x)dx,

Subject to

∫ 1

−1

√

1 + (y′(x))2dx = `,

y(−1) = y(1) = 0.

• By the Lagrange multiplier,
δJ(y;h) = 0

for every admissible h where the functional J is defined by

J(y) =

∫ 1

−1

(y + λ
√

1 + (y′(x))2)dx.

• Apply the Euler-Lagrange equation,

1− λ
d

dx

y′(x)
√

1 + (y′(x))2
= 0.

¦ Show that the solution is the arc of a circle.


